6,118 research outputs found
reaction near threshold
We analyze the total cross section data for near threshold
measured recently at SATURNE. Using an effective range approximation for the
on-shell S-wave final state interaction we extract from these data the
modulus fm of the threshold transition amplitude
. We present a calculation of various (tree-level) meson exchange
diagrams contributing to . It is essential that -emission from
the anomalous -vertex interferes destructively with
-emission from the proton lines. The contribution of scalar
-meson exchange to turns out to be negligibly small. Without
introducing off-shell meson-nucleon form factors the experimental value
fm can be reproduced with an -coupling constant
of . The results of the present approach agree qualitatively
with the J\"ulich model. We also perform a combined analysis of the reactions
and near threshold.Comment: Latex-file 6 pages, 2 Figure
Temporal intensity correlation of light scattered by a hot atomic vapor
We present temporal intensity correlation measurements of light scattered by
a hot atomic vapor. Clear evidence of photon bunching is shown at very short
time-scales (nanoseconds) imposed by the Doppler broadening of the hot vapor.
Moreover, we demonstrate that relevant information about the scattering
process, such as the ratio of single to multiple scattering, can be deduced
from the measured intensity correlation function. These measurements confirm
the interest of temporal intensity correlation to access non-trivial spectral
features, with potential applications in astrophysics
Measuring the Nonlinear Biasing Function from a Galaxy Redshift Survey
We present a simple method for evaluating the nonlinear biasing function of
galaxies from a redshift survey. The nonlinear biasing is characterized by the
conditional mean of the galaxy density fluctuation given the underlying mass
density fluctuation, or by the associated parameters of mean biasing and
nonlinearity (following Dekel & Lahav 1999). Using the distribution of galaxies
in cosmological simulations, at smoothing of a few Mpc, we find that the mean
biasing can be recovered to a good accuracy from the cumulative distribution
functions (CDFs) of galaxies and mass, despite the biasing scatter. Then, using
a suite of simulations of different cosmological models, we demonstrate that
the matter CDF is robust compared to the difference between it and the galaxy
CDF, and can be approximated for our purpose by a cumulative log-normal
distribution of 1+\delta with a single parameter \sigma. Finally, we show how
the nonlinear biasing function can be obtained with adequate accuracy directly
from the observed galaxy CDF in redshift space. Thus, the biasing function can
be obtained from counts in cells once the rms mass fluctuation at the
appropriate scale is assumed a priori. The relative biasing function between
different galaxy types is measurable in a similar way. The main source of error
is sparse sampling, which requires that the mean galaxy separation be smaller
than the smoothing scale. Once applied to redshift surveys such as PSCz, 2dF,
SDSS, or DEEP, the biasing function can provide valuable constraints on galaxy
formation and structure evolution.Comment: 23 pages, 7 figures, revised version, accepted for publication in Ap
CIRS: Cluster Infall Regions in the Sloan Digital Sky Survey I. Infall Patterns and Mass Profiles
We use the Fourth Data Release of the Sloan Digital Sky Survey to test the
ubiquity of infall patterns around galaxy clusters and measure cluster mass
profiles to large radii. We match X-ray cluster catalogs with SDSS, search for
infall patterns, and compute mass profiles for a complete sample of X-ray
selected clusters. Very clean infall patterns are apparent in most of the
clusters, with the fraction decreasing with increasing redshift due to
shallower sampling. All 72 clusters in a well-defined sample limited by
redshift (ensuring good sampling) and X-ray flux (excluding superpositions)
show infall patterns sufficient to apply the caustic technique. This sample is
by far the largest sample of cluster mass profiles extending to large radii to
date. Similar to CAIRNS, cluster infall patterns are better defined in
observations than in simulations. Further work is needed to determine the
source of this difference. We use the infall patterns to compute mass profiles
for 72 clusters and compare them to model profiles. Cluster scaling relations
using caustic masses agree well with those using X-ray or virial mass
estimates, confirming the reliability of the caustic technique. We confirm the
conclusion of CAIRNS that cluster infall regions are well fit by NFW and
Hernquist profiles and poorly fit by singular isothermal spheres. This much
larger sample enables new comparisons of cluster properties with those in
simulations. The shapes (specifically, NFW concentrations) of the mass profiles
agree well with the predictions of simulations. The mass inside the turnaround
radius is on average 2.190.18 times that within the virial radius. This
ratio agrees well with recent predictions from simulations of the final masses
of dark matter haloes.Comment: 34 pages, 24 figures, accepted for publication in AJ, full resolution
version available at http://www.astro.yale.edu/krines
Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry
We present a versatile, high-brightness, guided-wave source of polarization
entangled photons, emitted at a telecom wavelength. Photon-pairs are generated
using an integrated type-0 nonlinear waveguide, and subsequently prepared in a
polarization entangled state via a stabilized fiber interferometer. We show
that the single photon emission wavelength can be tuned over more than 50 nm,
whereas the single photon spectral bandwidth can be chosen at will over more
than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing
entanglement analysis, we demonstrate a high degree of control of the quantum
state via the violation of the Bell inequalities by more than 40 standard
deviations. This makes this scheme suitable for a wide range of quantum optics
experiments, ranging from fundamental research to quantum information
applications. We report on details of the setup, as well as on the
characterization of all included components, previously outlined in F. Kaiser
et al. (2013 Laser Phys. Lett. 10, 045202).Comment: 16 pages, 7 figure
Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland)
The build-up of methane in the hypolimnion of the eutrophic Lake Rotsee (Lucerne, Switzerland) was monitored over a full year. Sources and sinks of methane in the water column were characterized by measuring concentrations and carbon isotopic composition. In fall, high methane concentrations (up to 1mM) were measured in the anoxic water layer. In the oxic layer, methane concentrations were much lower and the isotopic composition shifted towards heavy carbon isotopes. Methane oxidation rates peaked at the interface between oxic and anoxic water layers at around 8-10m depth. The electron balance between the oxidants oxygen, sulphate, and nitrate, and the reductants methane, sulphide and ammonium, matched very well in the chemocline during the stratified season. The profile of carbon isotopic composition of methane showed strong indications for methane oxidation at the chemocline (including the oxycline). Aerobic methane oxidizing bacteria were detected at the interface using fluorescence in situ hybridization. Sequencing the responsible organisms from DGGE bands revealed that aerobic methanotrophs type I closely related to Methylomonas were present. Sulphate consumption occurred at the sediment surface and, only towards the end of the stagnation period, matched with a zone of methane consumption. In any case, the flux of sulphate below the chemocline was not sufficient to oxidize all the methane and other oxidants like nitrate, iron or manganese are necessary for the observed methane oxidation. Although most of the methane was oxidized either aerobically or anaerobically, Lake Rotsee was still a source of methane to the atmosphere with emission rates between 0.2mgCH4m−2day−1 in February and 7mgCH4m−2day−1 in Novembe
Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network
The nematode Caenorhabditis elegans, with information on neural connectivity,
three-dimensional position and cell linage provides a unique system for
understanding the development of neural networks. Although C. elegans has been
widely studied in the past, we present the first statistical study from a
developmental perspective, with findings that raise interesting suggestions on
the establishment of long-distance connections and network hubs. Here, we
analyze the neuro-development for temporal and spatial features, using birth
times of neurons and their three-dimensional positions. Comparisons of growth
in C. elegans with random spatial network growth highlight two findings
relevant to neural network development. First, most neurons which are linked by
long-distance connections are born around the same time and early on,
suggesting the possibility of early contact or interaction between connected
neurons during development. Second, early-born neurons are more highly
connected (tendency to form hubs) than later born neurons. This indicates that
the longer time frame available to them might underlie high connectivity. Both
outcomes are not observed for random connection formation. The study finds that
around one-third of electrically coupled long-range connections are late
forming, raising the question of what mechanisms are involved in ensuring their
accuracy, particularly in light of the extremely invariant connectivity
observed in C. elegans. In conclusion, the sequence of neural network
development highlights the possibility of early contact or interaction in
securing long-distance and high-degree connectivity
Exploring Large-scale Structure with Billions of Galaxies
We consider cosmological applications of galaxy number density correlations
to be inferred from future deep and wide multi-band optical surveys. We mostly
focus on very large scales as a probe of possible features in the primordial
power spectrum. We find the proposed survey of the Large Synoptic Survey
Telescope may be competitive with future all-sky CMB experiments over a broad
range of scales. On very large scales the inferred power spectrum is robust to
photometric redshift errors, and, given a sufficient number density of
galaxies, to angular variations in dust extinction and photometric calibration
errors. We also consider other applications, such as constraining dark energy
with the two CMB-calibrated standard rulers in the matter power spectrum, and
controlling the effect of photometric redshift errors to facilitate the
interpretation of cosmic shear data. We find that deep photometric surveys over
wide area can provide constraints that are competitive with spectroscopic
surveys in small volumes.Comment: 11 pages, 7 figures, ApJ accepted, references added, expanded
discussion in Sec. 3.
- …