27,929 research outputs found

    Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems

    Full text link
    Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering. Here, we show that quantum state conversion between cavity modes with different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. The fidelity for the conversion of gaussian states is derived by solving the Langevin equation in the adiabatic limit. We also show that photon pulses can be transmitted between input-output channels with different wavelengths via the effective optomechanical couplings and the output pulse shape can also be manipulated.Comment: 5 pages, 2 figures. Supplementary Materials at http://prl.aps.org/supplemental/PRL/v108/i15/e15360

    Optical wavelength conversion of quantum states with optomechanics

    Full text link
    An optomechanical interface that converts quantum states between optical fields with distinct wavelengths is proposed. A mechanical mode couples to two optical modes via radiation pressure and mediates the quantum state mapping between the two optical modes. A sequence of optomechanical π/2\pi/2 pulses enables state-swapping between optical and mechanical states as well as the cooling of the mechanical mode. Theoretical analysis shows that high fidelity conversion can be realized for states with small photon numbers in systems with experimentally achievable parameters. The pulsed conversion process also makes it possible to maintain high conversion fidelity at elevated bath temperatures.Comment: 4 pages, 4 figures, Fig. 4 looks weird (possible latex style problem

    The generic mapping tools version 6

    Get PDF
    The Generic Mapping Tools (GMT) software is ubiquitous in the Earth and ocean sciences. As a cross-platform tool producing high-quality maps and figures, it is used by tens of thousands of scientists around the world. The basic syntax of GMT scripts has evolved very slowly since the 1990s, despite the fact that GMT is generally perceived to have a steep learning curve with many pitfalls for beginners and experienced users alike. Reducing these pitfalls means changing the interface, which would break compatibility with thousands of existing scripts. With the latest GMT version 6, we solve this conundrum by introducing a new "modern mode" to complement the interface used in previous versions, which GMT 6 now calls "classic mode." GMT 6 defaults to classic mode and thus is a recommended upgrade for all GMT 5 users. Nonetheless, new users should take advantage of modern mode to make shorter scripts, quickly access commonly used global data sets, and take full advantage of the new tools to draw subplots, place insets, and create animations.Funding Agency National Science Foundation (NSF) Appeared in article as U.S. National Science Foundation MSU Geological Sciences Endowmentinfo:eu-repo/semantics/publishedVersio

    How does the stellar wind influence the radio morphology of a supernova remnant?

    Full text link
    We simulate the evolutions of the stellar wind and the supernova remnant (SNR) originating from a runaway massive star in an uniform Galactic environment based on the three-dimensional magnetohydrodynamics models. Taking the stellar wind into consideration, we can explain the radio morphologies of many supernova remnants. The directions of the kinematic velocity of the progenitor, the magnetic field and the line of sight are the most important factors influencing the morphologies. If the velocity is perpendicular to the magnetic field, the simulation will give us two different unilateral SNRs and a bilateral symmetric SNR. If the velocity is parallel to the magnetic field, we can obtain a bilateral asymmetric SNR and a quasi-circular SNR. Our simulations show the stellar wind plays a key role in the radio evolution of a SNR, which implies the Galactic global density and magnetic field distribution play a secondary role in shaping a SNR.Comment: 12pages, 35 figures, accepted for publication in Ap

    Circuit QED and sudden phase switching in a superconducting qubit array

    Full text link
    Superconducting qubits connected in an array can form quantum many-body systems such as the quantum Ising model. By coupling the qubits to a superconducting resonator, the combined system forms a circuit QED system. Here, we study the nonlinear behavior in the many-body state of the qubit array using a semiclassical approach. We show that sudden switchings as well as a bistable regime between the ferromagnetic phase and the paramagnetic phase can be observed in the qubit array. A superconducting circuit to implement this system is presented with realistic parameters .Comment: 4 pages, 3 figures, submitted for publication

    Supersymmetric Reciprocal Transformation and Its Applications

    Full text link
    The supersymmetric analog of the reciprocal transformation is introduced. This is used to establish a transformation between one of the supersymmetric Harry Dym equations and the supersymmetric modified Korteweg-de Vries equation. The reciprocal transformation, as a B\"{a}cklund-type transformation between these two equations, is adopted to construct a recursion operator of the supersymmetric Harry Dym equation. By proper factorization of the recursion operator, a bi-Hamiltonian structure is found for the supersymmetric Harry Dym equation. Furthermore, a supersymmetric Kawamoto equation is proposed and is associated to the supersymmetric Sawada-Kotera equation. The recursion operator and odd bi-Hamiltonian structure of the supersymmetric Kawamoto equation are also constructed.Comment: 31 pages, expande

    Water and nutrient balances in a large tile-drained agricultural catchment: a distributed modeling study

    Get PDF
    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network

    Two-qubit Quantum Logic Gate in Molecular Magnets

    Full text link
    We proposed a scheme to realize a controlled-NOT quantum logic gate in a dimer of exchange coupled single-molecule magnets, [Mn4]2[\textrm{Mn}_4]_2. We chosen the ground state and the three low-lying excited states of a dimer in a finite longitudinal magnetic field as the quantum computing bases and introduced a pulsed transverse magnetic field with a special frequency. The pulsed transverse magnetic field induces the transitions between the quantum computing bases so as to realize a controlled-NOT quantum logic gate. The transition rates between the quantum computing bases and between the quantum computing bases and other excited states are evaluated and analyzed.Comment: 7 pages, 2 figure
    corecore