2,775 research outputs found

    Foundational nonuniform (co)datatypes for higher-order logic

    Get PDF
    Nonuniform (or “nested” or “heterogeneous”) datatypes are recursively defined types in which the type arguments vary recursively. They arise in the implementation of finger trees and other efficient functional data structures. We show how to reduce a large class of nonuniform datatypes and codatatypes to uniform types in higher-order logic. We programmed this reduction in the Isabelle/HOL proof assistant, thereby enriching its specification language. Moreover, we derive (co)recusion and (co)induction principles based on a weak variant of parametricity

    Quantum Thermalization With Couplings

    Full text link
    We study the role of the system-bath coupling for the generalized canonical thermalization [S. Popescu, et al., Nature Physics 2,754(2006) and S. Goldstein et al., Phys. Rev. Lett. 96, 050403(2006)] that reduces almost all the pure states of the "universe" [formed by a system S plus its surrounding heat bath BB] to a canonical equilibrium state of S. We present an exactly solvable, but universal model for this kinematic thermalization with an explicit consideration about the energy shell deformation due to the interaction between S and B. By calculating the state numbers of the "universe" and its subsystems S and B in various deformed energy shells, it is found that, for the overwhelming majority of the "universe" states (they are entangled at least), the diagonal canonical typicality remains robust with respect to finite interactions between S and B. Particularly, the kinematic decoherence is utilized here to account for the vanishing of the off-diagonal elements of the reduced density matrix of S. It is pointed out that the non-vanishing off-diagonal elements due to the finiteness of bath and the stronger system-bath interaction might offer more novelties of the quantum thermalization.Comment: 4 pages, 2 figure

    Non-local Correlations are Generic in Infinite-Dimensional Bipartite Systems

    Full text link
    It was recently shown that the nonseparable density operators for a bipartite system are trace norm dense if either factor space has infinite dimension. We show here that non-local states -- i.e., states whose correlations cannot be reproduced by any local hidden variable model -- are also dense. Our constructions distinguish between the cases where both factor spaces are infinite-dimensional, where we show that states violating the CHSH inequality are dense, and the case where only one factor space is infinite-dimensional, where we identify open neighborhoods of nonseparable states that do not violate the CHSH inequality but show that states with a subtler form of non-locality (often called "hidden" non-locality) remain dense.Comment: 8 pages, RevTe

    Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels

    Full text link
    Two separated observers, by applying local operations to a supply of not-too-impure entangled states ({\em e.g.} singlets shared through a noisy channel), can prepare a smaller number of entangled pairs of arbitrarily high purity ({\em e.g.} near-perfect singlets). These can then be used to faithfully teleport unknown quantum states from one observer to the other, thereby achieving faithful transfrom one observer to the other, thereby achieving faithful transmission of quantum information through a noisy channel. We give upper and lower bounds on the yield D(M)D(M) of pure singlets (Ψ\ket{\Psi^-}) distillable from mixed states MM, showing D(M)>0D(M)>0 if \bra{\Psi^-}M\ket{\Psi^-}>\half.Comment: 4 pages (revtex) plus 1 figure (postscript). See also http://vesta.physics.ucla.edu/~smolin/ . Replaced to correct interchanged σx\sigma_x and σz\sigma_z near top of column 2, page

    Sufficient conditions for three-particle entanglement and their tests in recent experiments

    Get PDF
    We point out a loophole problem in some recent experimental claims to produce three-particle entanglement. The problem consists in the question whether mixtures of two-particle entangled states might suffice to explain the experimental data. In an attempt to close this loophole, we review two sufficient conditions that distinguish between N-particle states in which all N particles are entangled to each other and states in which only M particles are entangled (with M<N). It is shown that three recent experiments to obtain three-particle entangled states (Bouwmeester et al., Pan et al., and Rauschenbeutel et al.) do not meet these conditions. We conclude that the question whether these experiments provide confirmation of three-particle entanglement remains unresolved. We also propose modifications of the experiments that would make such confirmation feasible.Comment: 16 page

    Fast light, slow light, and phase singularities: a connection to generalized weak values

    Full text link
    We demonstrate that Aharonov-Albert-Vaidman (AAV) weak values have a direct relationship with the response function of a system, and have a much wider range of applicability in both the classical and quantum domains than previously thought. Using this idea, we have built an optical system, based on a birefringent photonic crystal, with an infinite number of weak values. In this system, the propagation speed of a polarized light pulse displays both superluminal and slow light behavior with a sharp transition between the two regimes. We show that this system's response possesses two-dimensional, vortex-antivortex phase singularities. Important consequences for optical signal processing are discussed.Comment: 9 pages, 4 figures, accepted in Physical Review Letters (2003

    Jamming non-local quantum correlations

    Get PDF
    We present a possible scheme to tamper with non-local quantum correlations in a way that is consistent with relativistic causality, but goes beyond quantum mechanics. A non-local ``jamming" mechanism, operating within a certain space-time window, would not violate relativistic causality and would not lead to contradictory causal loops. The results presented in this Letter do not depend on any model of how quantum correlations arise and apply to any jamming mechanism.Comment: 10 pp, LaTe

    Mixed-state entanglement and distillation: is there a ``bound'' entanglement in nature?

    Get PDF
    It is shown that if a mixed state can be distilled to the singlet form, it must violate partial transposition criterion [A. Peres, Phys. Rev. Lett. 76, 1413 (1996)]. It implies that there are two qualitatively different types of entanglement: ``free'' entanglement which is distillable, and ``bound'' entanglement which cannot be brought to the singlet form useful for quantum communication purposes. Possible physical meaning of the result is discussed.Comment: RevTeX, 4 page
    corecore