261,742 research outputs found

    Searching for Effects of Spatial Noncommutativity via Chern-Simons' Processes

    Get PDF
    The possibility of testing spatial noncommutativity in the case of both position-position and momentum-momentum noncommuting via a Chern-Simons' process is explored. A Chern-Simons process can be realized by an interaction of a charged particle in special crossed electric and magnetic fields, in which the Chern-Simons term leads to non-trivial dynamics in the limit of vanishing kinetic energy. Spatial noncommutativity leads to the spectrum of the orbital angular momentum possessing fractional values. Furthermore, in both limits of vanishing kinetic energy and subsequent vanishing magnetic field, the Chern-Simons term leads to this system having non-trivial dynamics again, and the dominant value of the lowest orbital angular momentum being /4\hbar/4, which is a clear signal of spatial noncommutativity. An experimental verification of this prediction by a Stern-Gerlach-type experiment is suggested.Comment: 18 page

    Morphological characterization of shocked porous material

    Full text link
    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodynamical properties of material is revealed and various experimental conditions are simulated. Numerical results indicate that, the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area AA roughly gives the velocity DD of a compressive-wave-series. When a velocity DD is mentioned, the corresponding threshold contour-level of the state variable, like the temperature, should also be stated. When the threshold contour-level increases, DD becomes smaller. The area AA increases parabolically with time tt during the initial period. The A(t)A(t) curve goes back to be linear in the following three cases: (i) when the porosity δ\delta approaches 1, (ii) when the initial shock becomes stronger, (iii) when the contour-level approaches the minimum value of the state variable. The area with high-temperature may continue to increase even after the early compressive-waves have arrived at the downstream free surface and some rarefactive-waves have come back into the target body. In the case of energetic material ... (see the full text)Comment: 3 figures in JPG forma

    Local density of states of a d-wave superconductor with inhomogeneous antiferromagnetic correlations

    Full text link
    The tunneling spectrum of an inhomogeneously doped extended Hubbard model is calculated at the mean field level. Self-consistent solutions admit both superconducting and antiferromagnetic order, which coexist inhomogeneously because of spatial randomness in the doping. The calculations find that, as a function of doping, there is a continuous cross over from a disordered ``pinned smectic'' state to a relatively homogeneous d-wave state with pockets of antiferromagnetic order. The density of states has a robust d-wave gap, and increasing antiferromagnetic correlations lead to a suppression of the coherence peaks. The spectra of isolated nanoscale antiferromagnetic domains are studied in detail, and are found to be very different from those of macroscopic antiferromagnets. Although no single set of model parameters reproduces all details of the experimental spectrum in BSCCO, many features, notably the collapse of the coherence peaks and the occurence of a low-energy shoulder in the local spectrum, occur naturally in these calculations.Comment: 9 pages, 5 figure

    Macroscopic tunneling of a membrane in an optomechanical double-well potential

    Full text link
    The macroscopic tunneling of an optomechanical membrane is considered. A cavity mode which couples quadratically to the membranes position can create highly tunable adiabatic double-well potentials, which together with the high Q-factors of such membranes render the observation of macroscopic tunneling possible. A suitable, pulsed measurement scheme using a linearly coupled mode of the cavity for the verification of the effect is studied.Comment: 5 pages, 5 figure

    Novel method for refinement of retained austenite in micro/nano-structured bainitic steels

    Get PDF
    A comparative study was conducted to assess the effects of two different heat treatments on the amount and morphology of the retained austenite in a micro/nano-structured bainitic steel. The heat treatments used in this work were two-stage bainitic transformation and bainitic-partitioning transformation. Both methods resulted in the generation of a multi-phase microstructure containing nanoscale bainitic ferrite, and/or fresh martensitic phases and much finer retained austenite. Both heat treatments were verified to be effective in refining the retained austenite in micro/nano-structured bainite and increasing the hardness. However, the bainitic transformation followed by partitioning cycle was proved to be a more viable approach than the two-stage bainitic transformation due to much shorter processing time, i.e. ∼2 h compared to ∼4 day, respectively

    Hardcore bosons on the dual of the bowtie lattice

    Full text link
    We study the zero temperature phase diagram of hardcore bosons on the dual of the bowtie lattice. Two types of striped diagonal long-range order (striped order I and striped order II) are discussed. A state with type-II striped order and superfluidity is found, even without nearest-neighbor repulsion. The emergence of such a state is due to the inhomogeneity and the anisotropy of the lattice structure. However, neither the translational symmetry nor the symmetry between sublattices of the original lattice is broken. In this paper, we restrict a 'solid state' of lattice bosons as a diagonal long-range ordered state breaking either the translational symmetry of the original lattice or the symmetry of different sublattices. We thus name such a phase a striped superfluid phase (SSF). In the presence of a nearest-neighbor repulsion, we find two striped charge density wave phases(SCDW I and II) with boson density ρ=1/2\rho=1/2 (with striped order I) and ρ=2/3\rho=2/3 (with striped order II) respectively, when the hopping amplitude is small compared with the repulsion. The SCDW I state is a solid, in which the translational symmetry of the original lattice is broken. We observe a rather special first-order phase transition showing an interesting multi-loop hysteresis phenomenon between the two SCDW phases when the hopping term is small enough. This can be accounted for by the special degeneracy of the ground states near the classical limit. The SSF re-appears outside the two SCDW phases. The transition between the SCDW I and SSF phases is first order, while the transition between SCDW II and SSF phases is continuous. We find that the superfluid stiffness is anisotropic in the SSF states with and without repulsion. In the SSF with repulsion, the superfluid stiffness is subject to different types of anisotropy in the region near half filling and above 2/3-filling.Comment: 10 figure

    Exciton states in cylindrical nanowires

    Full text link
    The exciton ground state and excited state energies are calculated for a model system of an infinitely long cylindrical wire. The effective Coulomb potential between the electron and the hole is studied as function of the wire radius. Within the adiabatic approximation, we obtain `exact' numerical results for the effective exciton potential and the lowest exciton energy levels which are fitted to simple analytical expressions. Furthermore, we investigated the influence of a magnetic field parallel to the nanowire on the effective potential and the exciton energy.Comment: 9 pages, 9 figures. Submitted for publication to PRB. Figures must be downloaded seperatel
    corecore