2,251 research outputs found

    Female site fidelity of the Mealy Mountain caribou herd (Rangifer tarandus caribou) in Labrador

    Get PDF
    The Mealy Mountain caribou population of southeastern Labrador is listed as threatened. Site fidelity - the philopatric tendency of an animal to remain in or return to the same site - has often been suspected in sedentary caribou like the Mealy Mountain, but rarely has been examined. Philopatric behaviours are important because fidelity sites may then receive priority protection from human disturbance. To describe and document site fidelity for the Mealy Mountain herd, satellite telemetry data from 12 collared adult females during three years was examined. The mean distance between locations in consecutive years of tracking the individual caribou was calculated and an annual profile of site fidelity generated. This profile illustrated that the lowest inter-year distances occurred during calving, when caribou returned to within 39 km (2005-06) and 11.5 km (2006-07) of the previous year's location, and during post-calving, when the mean distance was 7.7 km (2005-06). Spring snow depths were substantially greater in 2007 and appeared to weaken calving site fidelity. This spatial information may serve as a basis for detecting anthropogenic effects on woodland caribou

    Postpartum osteoporosis associated with proximal tibial stress fracture

    Get PDF
    A 33-year-old woman presented with acute nonspecific knee pain, 6months postpartum. MR imaging, computed tomography and radiography were performed and a proximal tibia plateau insufficiency fracture was detected. Bone densitometry demonstrated mild postpartum osteoporosis. To our knowledge these findings have not been described in this location and in this clinical setting. The etiology of the atraumatic fracture of the tibia is presumed to be due to a low bone mineral density. The bone loss was probably due to pregnancy, lactation and postpartum hormonal changes. There were no other inciting causes and the patient was normocalcemic. We discuss the presence of a postpartum stress fracture in a hitherto undescribed site in a patient who had lactated following an uncomplicated pregnancy and had no other identifiable cause for a stress fractur

    Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering

    Full text link
    We report that rhomb-shaped metal nanoantenna arrays support multiple plasmonic resonances, making them favorable bio-sensing substrates. Besides the two localized plasmonic dipole modes associated with the two principle axes of the rhombi, the sample supports an additional grating-induced surface plasmon polariton resonance. The plasmonic properties of all modes are carefully studied by far-field measurements together with numerical and analytical calculations. The sample is then applied to surface-enhanced Raman scattering measurements. It is shown to be highly efficient since two plasmonic resonances of the structure were simultaneously tuned to coincide with the excitation and the emission wave- length in the SERS experiment. The analysis is completed by measuring the impact of the polarization angle on the SERS signal.Comment: 13 pages, 5 figure

    Quantum Mechanical Aspects of Cell Microtubules: Science Fiction or Realistic Possibility?

    Full text link
    Recent experimental research with marine algae points towards quantum entanglement at ambient temperature, with correlations between essential biological units separated by distances as long as 20 Angstr\"oms. The associated decoherence times, due to environmental influences, are found to be of order 400 fs. This prompted some authors to connect such findings with the possibility of some kind of quantum computation taking place in these biological entities: within the decoherence time scales, the cell "quantum calculates" the optimal "path" along which energy and signal would be transported more efficiently. Prompted by these experimental results, in this talk I remind the audience of a related topic proposed several years ago in connection with the possible r\^ole of quantum mechanics and/or field theory on dissipation-free energy transfer in microtubules (MT), which constitute fundamental cell substructures. Quantum entanglement between tubulin dimers was argued to be possible, provided there exists sufficient isolation from other environmental cell effects. The model was based on certain ferroelectric aspects of MT. In the talk I review the model and the associated experimental tests so far and discuss future directions, especially in view of the algae photo-experiments.Comment: 31 pages latex, 11 pdf figures, uses special macros, Invited Plenary Talk at DICE2010, Castello Pasquini, Castiglioncello (Italy), September 13-18 201

    Utility of the Cortical Thickness of the Distal Radius as a Predictor of Distal-Radius Bone Density

    Get PDF
    Background: Bone density is an important factor in the management of fractures of the distal radius. Objectives: The aim of this study was to establish whether standard anteroposterior (AP) radiographs would provide the attending physician with a prediction of bone density. Patients and Methods: Six pairs of human cadaveric radii were harvested. The mean donor age was 74 years. Standardized AP radiographs were taken of the radii. The outside diameter and the inside diameter of the cortical shell at the metaphyseal / diaphyseal junction were measured and their ratio was calculated. Dual-energy x-ray absorptiometry (DXA) was used to obtain the bone mineral density (BMD) of the distal parts of the radii. The correlation of the BMD values with these ratios was studied. Results: The mean BMD was 0.559 (SD = 0.236) g / cm2. The mean outside diameter/inside diameter ratio was 1.24 (SD = 0.013); the ratio significantly correlated with the total BMD (P = 0.001; R2 = 0.710). In the BMD subregions, the correlation was also significant. Conclusions: The outside diameter/inside diameter ratio at the metaphyseal/diaphyseal junction of the distal radius on AP radiographs is suitable for use as a predictor of distal-radius bone density. Further studies should be performed, and clinical utility evaluated

    Aqueous Black Colloids of Reticular Nanostructured Gold

    Get PDF
    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy

    Defect Chaos of Oscillating Hexagons in Rotating Convection

    Full text link
    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the bandcenter these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the bandcenter a transition to a frozen vortex state is found.Comment: 4 pages, 6 figures. Fig. 3a with lower resolution no

    Cellular Communication through Light

    Get PDF
    Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry
    • …
    corecore