67 research outputs found

    Alignment of liquid crystal/carbon nanotube dispersions for application in unconventional computing

    Get PDF
    We demonstrate the manipulation of single-walled carbon nanotube/liquid crystal composites using in-plane electric fields. The conductivity of the materials is shown to be dependant on the application of a DC bias across the electrodes. When the materials are subjected to this in-plane field, it is suggested that the liquid crystals orientate, thereby forcing the SWCNTs to follow in alignment. This process occurs over many seconds, since the SWCNTs are significantly larger in size than the liquid crystals. The opportunity for applying this material to unconventional computing problems is suggested

    Fabrication and characterization of cellulose acetate-based nanofibers and nanofilms for H2S gas sensing application

    Get PDF
    Electrospun nanofibers and solution-casting nanofilms were produced from an environmentally friendly cellulose acetate (CA) blended with glycerol (as an ionic liquid (IL)), mixed with polypyrrole (PPy, a conducting polymer) and doped with tungsten oxide (WO3) nanoparticles. The sensing membranes fabricated were used to detect H2S gas at room temperature and shown to exhibit high performance. The results revealed that the lowest operating temperature of both nanofiber and nanofilm sensors was 20oC, with a minimum gas detection limit of 1 ppm. Moreover, the sensor exhibits a reasonably fast response, with a minimum average response time of 22.8 and 31.7 s for the proposed nanofiber and nanofilm based sensors, respectively. Furthermore, the results obtained indicated an excellent reproducibility, long-term stability, and low humidity dependence. Such distinctive properties coupled with an easy fabrication technique provide a promising potential to achieve a precise monitoring of harmful H2S gas in both indoor and outdoor atmospheres

    Computing with carbon nanotubes: optimization of threshold logic gates using disordered nanotube/polymer composites

    Get PDF
    This paper explores the use of single-walled carbon nanotube (SWCNT)/poly(butyl methacrylate) composites as a material for use in unconventional computing. The mechanical and electrical properties of the materials are investigated. The resulting data reveal a correlation between the SWCNT concentration/viscosity/conductivity and the computational capability of the composite. The viscosity increases significantly with the addition of SWCNTs to the polymer, mechanically reinforcing the host material and changing the electrical properties of the composite. The electrical conduction is found to depend strongly on the nanotube concentration; Poole-Frenkel conduction appears to dominate the conductivity at very low concentrations (0.11% by weight). The viscosity and conductivity both show a threshold point around 1% SWCNT concentration; this value is shown to be related to the computational performance of the material. A simple optimization of threshold logic gates shows that satisfactory computation is only achieved above a SWCNT concentration of 1%. In addition, there is some evidence that further above this threshold the computational efficiency begins to decrease

    Solutions from boundary condition changing operators in open string field theory

    Full text link
    We construct analytic solutions of open string field theory using boundary condition changing (bcc) operators. We focus on bcc operators with vanishing conformal weight such as those for regular marginal deformations of the background. For any Fock space state phi, the component string field of the solution Psi exhibits a remarkable factorization property: it is given by the matter three-point function of phi with a pair of bcc operators, multiplied by a universal function that only depends on the conformal weight of phi. This universal function is given by a simple integral expression that can be computed once and for all. The three-point functions with bcc operators are thus the only needed physical input of the particular open string background described by the solution. We illustrate our solution with the example of the rolling tachyon profile, for which we prove convergence analytically. The form of our solution, which involves bcc operators instead of explicit insertions of the marginal operator, can be a natural starting point for the construction of analytic solutions for arbitrary backgrounds.Comment: 21 pages, 1 figure, LaTeX2e; v2: minor changes, version published in JHE

    Biogeographical survey of soil microbiomes across sub-Saharan Africa:structure, drivers, and predicted climate-driven changes

    Get PDF
    BACKGROUND: Top-soil microbiomes make a vital contribution to the Earth’s ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS: The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa’s top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION: This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01297-w
    corecore