2,216 research outputs found

    The neural correlates of visual imagery vividness - an fMRI study and literature review

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Using the Vividness of Visual Imagery Questionnaire we selected 14 high-scoring and 15 low-scoring healthy participants from an initial sample of 111 undergraduates. The two groups were matched on measures of age, IQ, memory and mood but differed significantly in imagery vividness. We used fMRI to examine brain activation while participants looked at, or later imagined, famous faces and famous buildings. Group comparison revealed that the low-vividness group activated a more widespread set of brain regions while visualising than the high-vividness group. Parametric analysis of brain activation in relation to imagery vividness across the entire group of participants revealed distinct patterns of positive and negative correlation. In particular, several posterior cortical regions show a positive correlation with imagery vividness: regions of the fusiform gyrus, posterior cingulate and parahippocampal gyri (BAs 19, 29, 31 and 36) displayed exclusively positive correlations. By contrast several frontal regions including parts of anterior cingulate cortex (BA 24) and inferior frontal gyrus (BAs 44 and 47), as well as the insula (BA 13), auditory cortex (BA 41) and early visual cortices (BAs 17 and 18) displayed exclusively negative correlations. We discuss these results in relation to a previous, functional imaging study of a clinical case of ‘blind imagination’, and to the existing literature on the functional imaging correlates of imagery vividness and related phenomena in visual and other domains.Jonathan Fulford’s salary was supported via an NIHR grant

    Minimal Model for Sand Dunes

    Full text link
    We propose a minimal model for aeolian sand dunes. It combines an analytical description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The model provides a qualitative understanding of important features of real dunes, such as their longitudinal shape and aspect ratio, the formation of a slip face, the breaking of scale invariance, and the existence of a minimum dune size.Comment: 4 pages, 4 figures, replaced with publishd versio

    Gradient dopant profiling and spectral utilization of monolithic thin-film silicon photoelectrochemical tandem devices for solar water splitting

    Get PDF
    A cost-effective and earth-abundant photocathode based on hydrogenated amorphous silicon carbide (a-SiC:H) is demonstrated to split water into hydrogen and oxygen using solar energy. A monolithic a-SiC:H photoelectrochemical (PEC) cathode integrated with a hydrogenated amorphous silicon (a-SiC:H)/nano-crystalline silicon (nc-Si:H) double photovoltaic (PV) junction achieved a current density of −5.1 mA cm^(−2) at 0 V versus the reversible hydrogen electrode. The a-SiC:H photocathode used no hydrogen-evolution catalyst and the high current density was obtained using gradient boron doping. The growth of high quality nc-Si:H PV junctions in combination with optimized spectral utilization was achieved using glass substrates with integrated micro-textured photonic structures. The performance of the PEC/PV cathode was analyzed by simulations using Advanced Semiconductor Analysis (ASA) software

    Intravitreal anti-VEGF treatment for choroidal neovascularization secondary to traumatic choroidal rupture

    Get PDF
    Background So far only single cases with short follow-up have been reported on the use of intravitreal anti-VEGF for traumatic choroidal neovascularizations (CNV). This paper reports a large case series of patients with CNV secondary to choroidal rupture after ocular trauma receiving intravitreal anti-VEGF (vascular endothelial growth factor) injections. Methods Fifty-four patients with unilateral choroidal rupture after ocular trauma diagnosed between 2000 and 2016 were retrospectively evaluated. Eleven patients with CNV secondary to choroidal rupture were identified. Five eyes with traumatic secondary CNV were treated with anti-VEGF and were systematically analysed. The other 4 patients with inactive CNV underwent watchful observation. Results Four men and one woman with a mean age of 29 years (SD 12.4; range 19-45) had intravitreal anti-VEGF therapy for traumatic CNV. Another 4 patients with a mean age of 37 years (SD 6.6; range 31-46) presented with inactive CNV and did not receive specific treatment. In all 9 cases the mean interval between the ocular trauma and the diagnosis of CNV was 5.7 months (SD 4.75; range 2-12). In the treatment group per eye 4.2 injections (SD 3.2; range 1-8) were given on average. Four eyes were treated with bevacizumab and one eye with ranibizumab. Regression of CNV was noted in all eyes. In 4 eyes visual acuity (VA) improved, one eye kept stable visual acuity. Conclusions Here, we present the up to now largest case series of traumatic CNV membranes treated with anti-VEGF injections with a mean follow-up period of 5 years. Intravitreal anti-VEGF therapy seems to be safe and effective for secondary CNV after choroidal rupture. Compared to exudative age-related macular degeneration fewer injections are needed to control the disease

    Invariant Sets and Explicit Solutions to a Third-Order Model for the Shearless Stratified Turbulent Flow

    Full text link
    We study dynamics of the shearless stratified turbulent flows. Using the method of differential constraints we find a class of explicit solutions to the problem under consideration and establish that the differential constraint obtained coincides with the well-known Zeman--Lumley model for stratified flows.Comment: arxiv version is already officia

    Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells

    Get PDF
    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2 % under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten–bismuth vanadate (W:BiVO_4) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO_4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO_4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO_4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO_4 and the nc-Si:H cell

    Clinical outcomes in transient epileptic amnesia: A 10-year follow-up cohort study of 47 cases

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordOBJECTIVE: Transient epileptic amnesia (TEA) is a form of adult-onset epilepsy where presenting features are well described, but little is known regarding prognosis. This study aimed to elucidate the long-term prognosis of TEA regarding seizure control, memory, medical comorbidities, and life expectancy. METHODS: Up-to-date clinical information was collected for 47 people diagnosed with TEA who had joined the The Impairment of Memory in Epilepsy (TIME) study 10 years earlier. At entry to the study, information about comorbid conditions was systematically collected. Details regarding subsequent diagnoses, seizure activity, changes to treatment, or reports of cognitive impairment were obtained through the family doctor. The variables of interest were compared with UK population data. RESULTS: Mortality in the cohort was 21 of 47 (45%), with an average age at death of 82.5 years. Seizures remained well controlled for the majority but medications required adjustments in dose and type for some (28%). A small number (three cases) remained seizure-free without medication. History of cardiovascular disorders was frequent (78.7%), typically involving hypertension (55.3%). Autoimmune disorders (25.5%), cancer (23.4%), and depression (21.3%) were also commonly reported. Although persisting memory problems were often noted, dementia was diagnosed in seven cases (14.9%). Life expectancy and comorbidities in TEA did not differ from available population norms. SIGNIFICANCE: Results suggest that life expectancy is not reduced in TEA. Although TEA does not appear to be a self-limiting form of epilepsy, seizures are typically well controlled via medication. Because adjustments to medication may be required, even after long periods of stability, ongoing medical monitoring is recommended. Comorbid vascular disorders are frequent but appear similar to general population estimates. Monitoring mood may be important, given that people with chronic conditions are often vulnerable to depression. Because of persisting memory difficulties, the development of effective memory interventions for people with TEA is warranted.Dunhill Medical TrustMedical Research Council (MRC)Alzheimer's Societ

    CT ​EvaLuation ​by ​ARtificial ​Intelligence ​For ​Atherosclerosis, Stenosis and Vascular ​MorphologY ​(CLARIFY): ​A ​Multi-center, international study

    Get PDF
    Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.BACKGROUND: Atherosclerosis evaluation by coronary computed tomography angiography (CCTA) is promising for coronary artery disease (CAD) risk stratification, but time consuming and requires high expertise. Artificial Intelligence (AI) applied to CCTA for comprehensive CAD assessment may overcome these limitations. We hypothesized AI aided analysis allows for rapid, accurate evaluation of vessel morphology and stenosis. METHODS: This was a multi-site study of 232 patients undergoing CCTA. Studies were analyzed by FDA-cleared software service that performs AI-driven coronary artery segmentation and labeling, lumen and vessel wall determination, plaque quantification and characterization with comparison to ground truth of consensus by three L3 readers. CCTAs were analyzed for: % maximal diameter stenosis, plaque volume and composition, presence of high-risk plaque and Coronary Artery Disease Reporting & Data System (CAD-RADS) category. RESULTS: AI performance was excellent for accuracy, sensitivity, specificity, positive predictive value and negative predictive value as follows: >70% stenosis: 99.7%, 90.9%, 99.8%, 93.3%, 99.9%, respectively; >50% stenosis: 94.8%, 80.0%, 97.0, 80.0%, 97.0%, respectively. Bland-Altman plots depict agreement between expert reader and AI determined maximal diameter stenosis for per-vessel (mean difference -0.8%; 95% CI 13.8% to -15.3%) and per-patient (mean difference -2.3%; 95% CI 15.8% to -20.4%). L3 and AI agreed within one CAD-RADS category in 228/232 (98.3%) exams per-patient and 923/924 (99.9%) vessels on a per-vessel basis. There was a wide range of atherosclerosis in the coronary artery territories assessed by AI when stratified by CAD-RADS distribution. CONCLUSIONS: AI-aided approach to CCTA interpretation determines coronary stenosis and CAD-RADS category in close agreement with consensus of L3 expert readers. There was a wide range of atherosclerosis identified through AI.proofpublishe

    Hilbert Lattice Equations

    Full text link
    There are five known classes of lattice equations that hold in every infinite dimensional Hilbert space underlying quantum systems: generalised orthoarguesian, Mayet's E_A, Godowski, Mayet-Godowski, and Mayet's E equations. We obtain a result which opens a possibility that the first two classes coincide. We devise new algorithms to generate Mayet-Godowski equations that allow us to prove that the fourth class properly includes the third. An open problem related to the last class is answered. Finally, we show some new results on the Godowski lattices characterising the third class of equations.Comment: 24 pages, 3 figure

    Rapid and Precise Semi-Automatic Axon Quantification in Human Peripheral Nerves

    Get PDF
    We developed a time-efficient semi-automated axon quantification method using freeware in human cranial nerve sections stained with paraphenylenediamine (PPD). It was used to analyze a total of 1238 facial and masseteric nerve biopsies. The technique was validated by comparing manual and semi-automated quantification of 129 (10.4%) randomly selected biopsies. The software-based method demonstrated a sensitivity of 94% and a specificity of 87%. Semi-automatic axon counting was significantly faster (p<0.001) than manual counting. It took 1hour and 47minutes for all 129 biopsies (averaging 50sec per biopsy, 0.04seconds per axon). The counting process is automatic and does not need to be supervised. Manual counting took 21hours and 6minutes in total (average 9minutes and 49seconds per biopsy, 0.52seconds per axon). Our method showed a linear correlation to the manual counts (R=0.944 Spearman rho). Attempts have been made by several research groups to automate axonal load quantification. These methods often require specific hard- and software and are therefore only accessible to a few specialized laboratories. Our semi-automated axon quantification is precise, reliable and time-sparing using publicly available software and should be useful for an effective axon quantification in various human peripheral nerves
    corecore