326 research outputs found

    Numerical Investigations on Changes of the Main Shear Plane while Broaching

    Get PDF
    AbstractThe quality of broached components can be influenced by different factors, such as am-bient temperatures, human factors or vibrations of the machine structure induced by process-machine-interactions. These vibrations are normally initiated by changing pro-cess forces, which are mainly caused by cutting thickness or rake angle variations. Broached components are produced within one motion of the broach along the surface of the work piece, where multiple teeth in a row are in contact. The variation of the cut- ting thickness results from a wavy profile on the surface generated by the previous cut-ting process or the previous tooth. When the cutting thickness changes during the process, the rake angle varies, too. In some further published works, the changing cutting thickness and the changing rake angle during broaching were investigated by means of machining simulations with the result that the process forces are still adjusting after the cutting thickness and the rake angle have already reached a stable value. The adjustment of the shear plane on the new cutting conditions is mentioned as the main reason. This paper presents some deeper investigations on this effect. Therefore, 2D machining simulations for different cutting thicknesses and cutting velocities are performed. The investigations show tendencies for the still adjusting shear plane after changing the cutting thickness or the rake angle during the cutting process. Finally, the simulation results are validated with experimentally observed data

    Simulation of distortion due to machining of thin-walled components

    Get PDF
    The distortion of components is strongly related to the residual stress state induced by manufacturing processes like heat treatment, forming or machining. Each process step affects the initial stress state of the following process step. When removing material during machining, the component establishes a new stress equilibrium. Stresses are redistributed causing the component geometry to adjust. Especially for thin-walled components distortion potential is high. Gaining knowledge about the influence of initial loads and the release of distortion during machining processes helps to increase product quality and efficiency. The influences of different initial stress states and different machining parameters on the amount of distortion are examined using both FEM simulations and experiments. A thin-walled T-profile made of aluminum alloy Al 7075-T6 serves as test specimen. A bending process applies a load to initialize a repeatable and defined residual stress state. A groove was machined afterwards into the plastically deformed work piece to trigger stress redistribution and a release of distortion. Different loads with 35 to 45 kN and two different geometries of a groove were used. The amount of initial stress has a significant effect on the distortion potential which could be quantified in the study. Simulations show the same behavior as the experiments and the results match very well especially for a high load

    Complementary Machining: Effect of tool types on tool wear and surface integrity of AISI 4140

    Get PDF
    Complementary Machining is a process strategy for the time-efficient mechanical surface treatment of metallic workpieces. The characteristic of Complementary Machining is that after machining, a mechanical surface treatment is carried out using the cutting tool. The cutting tool moves over the workpiece surface in opposite direction to the machining process and induces an elastic-plastic deformation in the surface layer. Previous investigations have shown the possibility to achieve life-enhancing surface layer states in turning of AISI 4140 with Complementary Machining and to achieve fatigue strengths comparable to those after shot peening. In this paper, the influence of the tool types and process parameters, such as the feed rate, on the resulting topography and the tool wear, represented by changes of cutting edge microgeometry, during Complementary Machining of AISI 4140 are investigated based on the previous investigations. In addition to different substrates of the cutting insert, the focus of the investigations is also on the influence of tool coating. Both the tool wear and the resulting topography were analyzed tactilely and correlated with the process parameters. The results show a clear influence of the used substrate of the cutting insert and coating on the tool wear and the resulting topography

    FEM-based comparison of models to predict dynamic recrystallization during orthogonal cutting of AISI 4140

    Get PDF
    Machining processes induce a thermo-mechanical load collective on the surface layer, which leads to grain refinement of varying depths depending on several factors apart from the workpiece. The size relation of the cutting edge radius to the cutting depth (relative roundness) as well as the cutting edge microgeometry influence the generation of nanocrystalline layers. In this work several models to predict dynamic recrystallization during orthogonal cutting of AISI 4140 are compared using 2D FEM-models considering both, relative roundness and cutting edge microgeometry

    Influence of anisotropy of additively manufactured AlSi10Mg parts on chip formation during orthogonal cutting

    Get PDF
    Anisotropic behavior of metals can influence manufacturing processes including acting thermo-mechanical loads and resulting surface layer states. In additive manufacturing, the build-up direction influences material states like microstructure, density distribution and stress fields, possibly leading to anisotropic behavior. In this work, additively manufactured AlSi10Mg is characterized in tension tests in order to determine the anisotropic material deformation behavior due to the build-up procedure. This was implemented in 2D cutting simulations using finite element method. Additionally, orthogonal cutting experiments were performed in order to determine process forces and chip formation, which finally were used in order to validate simulations

    Milling parameter and tool wear dependent surface quality in micro-milling of brass

    Get PDF
    Short life-time and high tool costs still remain major constraints for the micro-milling process. Understanding the wear mechanisms and their effects on the workpiece quality is essential for efficient tool usage. Usually, wear increases the cutting forces and reduces the emerging surface quality during the micro-milling process. Due to high tool costs, cutting parameters are usually chosen for optimal tool lifetime and/or process time rather than optimal surface quality. The scope of this paper is to investigate the correlation of the process parameters, strategy and wear status of the tool on the resulting surface topography. To reach this goal, micro-milling experiments were conducted, in which several grooves were milled using two end milling tools, new and worn, with a diameter of 1.5 mm and four cutting edges. The cutting speed and feed were varied, as well as the cutting direction. Brass was chosen as workpiece material to ensure a constant wear state of the tools during the experiments. During the cutting process the process forces were recorded and examined for their magnitude and frequency response. Furthermore, the grooves were analyzed optically for their surface roughness. The roughness shows in most cases slightly higher values for the specimen manufactured with the worn tool than the ones done with the new tool. The biggest influence on the surface roughness results from the feed rate, while cutting speed and milling strategy have a smaller influence. The measured cutting forces show similar tendencies, than the resulting surface roughness. The results show also a significant influence of tool wear on the vibration behavior during the process, while the influence of feed rate is mostly negligible. This results partly from the greater tool runout and bigger deviation of the cutting edges

    Process Combination of VPP-LED and Vacuum Die Casting for Producing Complex Ceramic 3D-MID

    Get PDF
    Future developments lead to increasing demands on mechatronic integrated devices (MID). Therefore, ceramics have to be used as substrate material and conductor tracks have to be located in the interior of components to be sufficiently protected. A process combination of vat photopolymerization (VPP-LED) and vacuum die casting is investigated for realizing such structures. First, optimized process parameters are derived by studying the filling behavior of straight capillaries. Subsequently, the results are transferred to complex additively manufactured substrates to derive design guidelines

    Numerical modelling of cutting forces in gear skiving

    Get PDF
    Gear skiving is a high-performance machining process for gear manufacturing. Due to its complex kinematics, the local cutting conditions vary during tool engagement. Particularly, the local rake angle can reach highly negative values, which have a significant effect on the cutting force. In this paper, the Kienzle force model with additional coefficients was implemented in a numerical model to calculate local cutting forces considering the influence of local rake angle. The experimental validation based on total cutting forces shows good results and indicates an increase of model accuracy for a wide parameter range by considering the rake angle variation

    Effect of tool coatings on surface grain refinement in orthogonal cutting of AISI 4140 steel

    Get PDF
    Recrystallization mechanisms leading to the generation of ultrafine grains (UFG) by surface severe plastic deformation (S2PD) at low temperatures (< 0.5Tm (melting temperature)) have been investigated over the last years. Material removal processes like broaching impose large plastic strains along the shear plane during chip formation, leading in many cases to changes in the workpiece subsurface microstructure. In this work the influence of the cutting material on surface grain recrystallization were studied on broaching of AISI 4140q&t steel. Orthogonal cutting tests were carried out in dry conditions on a broaching machine using tools with different coatings. Uncoated cemented carbide inserts were geometrically prepared using fixed abrasive grinding processes and then coated by physical vapor deposition (PVD) with Al2O3 and CrVN thin films. Workpiece subsurface layers were analyzed after machining by Focused Ion Beam (FIB-SEM) and X-ray diffraction (XRD). The presented results show the influence of the cutting material on the final microstructure of the machined workpieces through the determination of the final grain sizes and dislocation densities
    • …
    corecore