16 research outputs found

    The logic of kinetic regulation in the thioredoxin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.</p> <p>Results</p> <p>Analysis of a realistic computational model of the <it>Escherichia coli </it>thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models.</p> <p>Conclusions</p> <p>Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.</p

    The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways

    No full text
    One of the most prevalent malignancies is esophageal squamous cell carcinoma (ESCC), which is associated with high morbidity and mortality. Substance P (SP), as one of the peptides released from sensory nerves, causes the enhancement of cellular excitability through the activation of the neurokinin-1 (NK1) receptor in several human tumor cells. Aprepitant, a specific, potent, and long-acting NK1 receptor antagonist, is considered as a novel agent to inhibit proliferation and induce apoptosis in malignant cells. Since the antitumor mechanism of aprepitant in ESCC is not completely understood, we conducted this study and found that aprepitant induced growth inhibition of KYSE-30 cells and arrested cells in the G2/M phase of the cell cycle. Aprepitant also caused apoptotic cell death and inhibited activation of the PI3K/Akt axis and its downstream effectors, including NF-κB in KYSE-30 cells. Besides, quantitative real-time (qRT)-PCR analysis showed a significant down-regulation of NF-κB target genes in KYSE-30 cells, indicating a probable NF-κB-dependent mechanism involved in aprepitant cytotoxicity. Thus, the present study recommends that SP/NK1R system might, therefore, be considered as an emerging and promising therapeutic strategy against ESCC. © 2020, Springer Nature B.V

    Aprepitant Promotes Caspase-Dependent Apoptotic Cell Death and G2/M Arrest through PI3K/Akt/NF- κ B Axis in Cancer Stem-Like Esophageal Squamous Cell Carcinoma Spheres

    No full text
    The antagonists of the neurokinin-1 receptor (NK1R) are known for their anti-inflammatory, anxiolytic, antiemetic, and anticancer activities. Aprepitant, a nonpeptide NK1R antagonist, is used in nausea and vomiting, the most common side effects of cancer chemotherapy in patients. It has been established that NK1R activation by substance P (SP), which links cancer promotion and progression to a neurokinin-mediated environment, became one mechanism that corresponds to the mitogenesis of tumor cells. Therefore, this study is aimed at explaining and evaluating the anticancer impacts of aprepitant on esophageal squamous cancer cell (ESCC) spheres by using in vitro experiments, such as resazurin, ROS, annexin-V binding, RT-PCR, and Western blot analysis. As a result, we showed that aprepitant had strong antiproliferative and cytotoxic effects on ESCC cell spheres. Also, aprepitant caused significant G2-M cell cycle arrest depending on concentration increase. Further, exposure of cells to this agent resulted in caspase -8/-9-dependent apoptotic pathway activation by modifying the expression of genes involved in apoptosis. Besides, treatment of the cells by aprepitant abrogates of the PI3K/Akt pathway, as shown by reducing the level of Akt, induces apoptotic cell death. In summary, pharmacological inhibition of NK1R with aprepitant seems to have a significant chance of treating ESCC as a single agent or in conjunction with other chemotherapeutic drugs. © 2021 Hossein Javid et al
    corecore