6,829 research outputs found

    Chiral symmetry restoration in excited hadrons, quantum fluctuations, and quasiclassics

    Full text link
    In this paper, we discuss the transition to the semiclassical regime in excited hadrons, and consequently, the restoration of chiral symmetry for these states. We use a generalised Nambu-Jona-Lasinio model with the interaction between quarks in the form of the instantaneous Lorentz-vector confining potential. This model is known to provide spontaneous breaking of chiral symmetry in the vacuum via the standard selfenergy loops for valence quarks. It has been shown recently that the effective single-quark potential is of the Lorentz-scalar nature, for the low-lying hadrons, while, for the high-lying states, it becomes a pure Lorentz vector and hence the model exhibits the restoration of chiral symmetry. We demonstrate explicitly the quantum nature of chiral symmetry breaking, the absence of chiral symmetry breaking in the classical limit as well as the transition to the semiclassical regime for excited states, where the effect of chiral symmetry breaking becomes only a small correction to the classical contributions.Comment: RevTeX4, 20 pages, 4 Postscript figures, uses epsfig.sty, typos correcte

    Scalable quantum information processing with atomic ensembles and flying photons

    Full text link
    We present a scheme for scalable quantum information processing (QIP) with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction, in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.Comment: 8 pages, 7 figure

    Localization of the SFT inspired Nonlocal Linear Models and Exact Solutions

    Full text link
    A general class of gravitational models driven by a nonlocal scalar field with a linear or quadratic potential is considered. We study the action with an arbitrary analytic function F(□)F(\Box), which has both simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models with linear potentials. Exact solutions in the Friedmann-Robertson-Walker and Bianchi I metrics are presented.Comment: 20 pages, 3 figures, published in the proceedings of the VIII International Workshop "Supersymmetries and Quantum Symmetries" (SQS'09), Dubna, Russia, July 29 - August 3, 2009, http://theor.jinr.ru/~sqs09

    Polarization-dependent transformation of a paraxial beam upon reflection and refraction: a real-space approach

    Full text link
    We analyze the paraxial beam transformation upon reflection and refraction at a plane boundary. In contrast to the usual approach dealing with the beam angular spectrum, we apply the continuity conditions to explicit spatial representations of the electric and magnetic fields on both sides of the boundary. It is shown that the polarization-dependent distortions of the beam trajectory (in particular, the "longitudinal" Goos-H\"anchen shift and the "lateral" Imbert-Fedorov shift of the beam center of gravity) are directly connected to the incident beam longitudinal component and appear due to its transformation at the boundary.Comment: 10 pages, 1 figure. Formulae (32), (33), footnote 2 and Ref. 27 are added, some sentences are correcte

    Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    Get PDF
    Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special features of the mechanical actions produced by the spin and orbital parts of the internal energy flow are recognized. In particular, the transverse orbital flow exerts the transverse force that grows as a^3 for conducting and as a^6 for dielectric subwavelength particle with radius a, in compliance with the dipole mechanism of the field-particle interaction; the force associated with the spin flow behaves as a^8 in both cases, which testifies for the non-dipole mechanism. The results can be used for experimental identification and separate investigation of the spin and orbital parts of the internal energy flow in light fields.Comment: 17 pages, 5 figures. For resubmission, the language is improved, numerical mistakes in Fig. 4 are corrected and discussion is modified accordingl

    Scalar and Spinor Particles with Low Binding Energy in the Strong Stationary Magnetic Field Studied by Means of Two-and Three-Dimensional Models

    Get PDF
    On the basis of analytic solutions of Schrodinger and Pauli equations for a uniform magnetic field and a single attractive ÎŽ(r)\delta({\bf r})-potential the equations for the bound one-active electron states are discussed. It is vary important that ground electron states in the magnetic field essentially different from the analog state of spin-0 particles that binding energy has been intensively studied at more then forty years ago. We show that binding energy equations for spin-1/2 particles can be obtained without using of a well-known language of boundary conditions in the model of ÎŽ\delta-potential that has been developed in pioneering works. Obtained equations are used for the analytically calculation of the energy level displacements, which demonstrate nonlinear dependencies on field intensities. It is shown that in a case of the weak intensity a magnetic field indeed plays a stabilizing role in considering systems. However the strong magnetic field shows the opposite action. We are expected that these properties can be of importance for real quantum mechanical fermionic systems in two- and three-dimensional cases.Comment: 18 page

    Stable Exact Solutions in Cosmological Models with Two Scalar Fields

    Full text link
    The stability of isotropic cosmological solutions for two-field models in the Bianchi I metric is considered. We prove that the sufficient conditions for the Lyapunov stability in the Friedmann-Robertson-Walker metric provide the stability with respect to anisotropic perturbations in the Bianchi I metric and with respect to the cold dark matter energy density fluctuations. Sufficient conditions for the Lyapunov stability of the isotropic fixed points of the system of the Einstein equations have been found. We use the superpotential method to construct stable kink-type solutions and obtain sufficient conditions on the superpotential for the Lyapunov stability of the corresponding exact solutions. We analyze the stability of isotropic kink-type solutions for string field theory inspired cosmological models.Comment: 23 pages, v3:typos corrected, references adde
    • 

    corecore