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Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze
numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within
the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry between the forward-
and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of
the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and
conducting particles of different sizes are calculated and special features of the mechanical actions produced by
the spin and orbital parts of the internal energy flow are recognized. In particular, the transverse orbital flow
exerts the transverse force that grows as a3 for conducting and as a6 for dielectric subwavelength particle with
radius a, in compliance with the dipole mechanism of the field-particle interaction; the force associated with the
spin flow behaves as a8 in both cases, which testifies for the nondipole mechanism. The results can be used for
experimental identification and separate investigation of the spin and orbital parts of the internal energy flow in
light fields.

DOI: 10.1103/PhysRevA.86.023847 PACS number(s): 42.50.Wk, 42.25.Fx, 42.25.Ja, 42.60.Jf

I. INTRODUCTION

The steady interest in light beams with angular momentum
and in singular optics [1–4] has stimulated a growing attention
to the internal energy flows in light fields (optical currents)
[5–12]. The internal energy flow pattern provides a physically
meaningful and universal characterization of arbitrary light
fields. This is especially suitable for near-field optics and
in new applications associated with micro-optics and nano-
optics, invisibility cloaking, superlensing, and metamaterials
[13–16]. More important is that the internal energy flows
reveal the intimate geometric and dynamic essentials of the
light field transformations that underlie any process of light
beam formation, propagation, or diffraction [9–12,17]. In
particular, the total energy flow density (TFD), represented
via the time-averaged Poynting vector distribution, can be
subdivided into the “spin” (SFD) and “orbital” (OFD) parts
to reflect the peculiar properties associated with the spin and
orbital degrees of freedom of light, especially their unique
features and interrelations [9–12]. The spin flow is usually
associated with inhomogeneous circular polarization while the
orbital flow is due to the explicit energy redistribution within
an optical beam.

In view of such important and useful properties, the TFD
as well as its spin and orbital constituents appear to be
valuable instruments for the light field description and analysis.
However, wide utilization of these instruments is hampered by
difficulties in their experimental detection (visualization) and
measurement. As far as we can judge, the only regular method
of energy flow measurement relies upon determining the
electric and, if necessary, magnetic vectors of the optical field
followed by the Poynting vector calculation via the standard
formulas [13,18,19]. In this situation, the possibilities for
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immediate detection and/or visualization of the internal flows
become rather attractive and appealing. The most promising
approach, repeatedly used in experimental practice [20–23], is
based on the mechanical action the energy flow exerts on probe
particles with various sizes, shapes, and optical properties.
This relies on the fact that the TFD is proportional to the
field momentum density [24], and also on the assumption
that a particle, due to absorption, reflection, or scattering of
the incident light partially feels the light field momentum
and starts to move in accordance with its local value and
direction. During the past years, this approach has been well
elaborated upon, mainly due to close connection with problems
of optically driven micromachines, microengineering, and
micromanipulation [20,25].

Nevertheless, despite many impressive practical results, in
applications related to the fundamental study of the internal
flows this method is still far from ideal. The main reason
is that the field-induced motion of particles depends on
many additional factors. Together with the electromagnetic
ponderomotive influences of non-Poynting origin (gradient
force, dissipative force, polarization-dependent dipole force
[26–29]), the specific ghost effects may occur due to the
medium in which the probe particles are suspended (radio-
metric, photophoretic forces, the medium viscosity, etc.), the
particle-containing cell (its configuration, the wall friction),
and because of the particle shape and material [20,25]. Even
in situations where all non-Poynting sources are isolated
(e.g., due to special geometry of the field and the measuring
equipment [20,26] or by proper calibration procedures), it is
rather difficult to establish an exact numerical correspondence
between the probe particle motion and the local value of the
field momentum. First, there is no simple and transparent
model for a force produced by the electromagnetic momentum
interacting with a medium [10], and second, any particle
disturbs the electromagnetic field in the ambient region, of
at least on the order of a wavelength, and the real perturbed

023847-11050-2947/2012/86(2)/023847(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.023847


BEKSHAEV, ANGELSKY, HANSON, AND ZENKOVA PHYSICAL REVIEW A 86, 023847 (2012)

field felt by the particle may be very different from the
unperturbed field pattern that existed before the particle was
present [12,30,31].

The situation is further complicated by the existence of two
sorts of energy flow of different nature. The mechanical action
of the OFD can be satisfactorily explained by using the notion
of transverse light pressure [12]. At the same time, although the
SFD’s ability to cause translation or orbital motion of particles
has been proved both by simulation [26] and in experiment
[32,33], the physical nature of this effect cannot be understood
based on the existing model of the SFD origin [3,7]. Moreover,
the usual model of the optical force acting on a subwavelength-
sized particle (in the Rayleigh scattering regime), which is
based on the classical electric-dipole interaction Hamiltonian
[28,29,34], does not predict any force associated with the SFD.
Under these circumstances, the question arises on the nature
of the SFD-induced mechanical action and on the mechanical
equivalence between the OFD and the SFD: whether the spin
and orbital momenta produce the same motion of a particle,
provided that they possess the same direction and magnitude.

In our opinion, a possible way of resolving the above
issues can be found in considering relatively simple model
situations where the relations between the force acting on a
particle and the energy flow in the incident optical field can be
easily calculated and interpreted, so that contributions of the
spin- and orbital-energy flow constituents can be “isolated”
and studied separately. An example of such an approach was
described recently [26]: The incident field is formed by only
two plane waves, which allows one to employ the standard
Mie theory for calculating mechanical action of the field.
Subsequently, the results are juxtaposed with the TFD, OFD,
and SFD patterns of the incident field, as well as with its energy
distribution. This enables identification of the ponderomotive
contributions owing to the different energy flow constituents
together with the influences of the non-Poynting factors with
explicit account for the field structure and the particle’s optical
properties. Despite its simplicity, this model is flexible enough
to represent the main features of fields with inhomogeneous
distributions of amplitude, phase, and polarization that can
be realized experimentally [27]. In the present work, within
the frame of this model we “construct” field configurations
that distinctly differ by the SFD and OFD patterns and
analyze the mechanical actions they exert on dielectric and
absorbing nonmagnetic particles. This allows us to reveal some
special features of the ponderomotive influences associated
with the different kinds of field momentum, their similar and
distinguishing aspects, and to discuss possibilities for practical
detection of the internal energy flows and discrimination
between their spin and orbital constituents.

II. MODEL DESCRIPTION

A. Incident field

In what follows, we will consider monochromatic optical
waves where the electric and magnetic vectors can be written as
Re[E exp(−iωt)], Re[H exp(−iωt)] with complex amplitudes
E and H. Hence the time-averaged Poynting vector distribution
S representing the field TFD and the field momentum density

p are determined by expression [24]

S = c2p = gcRe(E∗ × H). (1)

Here g = (8π )−1 in the Gaussian system of units, and c

is the velocity of light in vacuum. Due to the proportionality
between S and p we only operate with one of these quantities
in what follows; we choose p, though preserving the name
“energy flow density” for its physical meaning. In further
consideration we shall take into account that the field-particle
interaction takes place in a medium rather than in vacuum;
then p in Eq. (1) represents the kinetic (Abraham) momentum
density of the electromagnetic field, and its decomposition into
the spin and orbital parts, pS and pO , reads [35]

pS = g

4ω
Im

[
∇ ×

(
1

μ
E∗ × E

)
+ ∇ ×

(
1

ε
H∗ × H

)]
, (2)

pO = p − pS

= g

2ω
Im

[
1

μ
E∗ · (∇) E − 1

2
∇

(
1

μ

)
× (E∗ × E)

+ 1

ε
H∗ · (∇) H − 1

2
∇

(
1

ε

)
× (H∗ × H)

]
, (3)

where ε and μ are the medium permittivity and permeability,
respectively, and E∗ · (∇)E is the invariant notation for the
vector operation that in Cartesian components reads [10,12]

E∗ · (∇) E = E∗
x∇Ex + E∗

y∇Ey + E∗
z ∇Ez.

Equations (2) and (3) are written for general conditions
admitting an inhomogeneous medium; in a homogeneous case,
Eq. (3) can be simplified omitting the terms with gradients
of ε−1 and μ−1. Another important quantity that plays a
substantial role in the analysis is the time-averaged energy
density:

w = g

2
(ε|E|2 + μ|H|2). (4)

Following Ref. [26], our task is to determine the electro-
magnetic field perturbed by the presence of a particle, then
to calculate its momentum and to compare the result with the
initial momentum carried by the unperturbed incident field. In
general, due to the particle presence, the scattered field Esc,
Hsc emerges that adds to the incident field E, H [31] causing
the total field momentum density to be changed by

�p = g

c
Re[(E∗ + E∗

sc) × (H + Hsc) − E∗ × H]

= g

c
Re(E∗

sc × Hsc + E∗ × Hsc + E∗
sc × H). (5)

The change of the field momentum results in a recoil force
acting on the particle. This force can be determined by deriving
the field momentum flux through the spherical surface AR with
radius R→∞ surrounding the particle. In the medium with the
refractive index n = √

εμ, this force equals

F = − c

n

∮
AR

�pdA = − c

n
R2

∮
�pd�, (6)

where d� indicates integration over the solid angle. This
depends on the particle position, and our aim is to find
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FIG. 1. Geometrical conditions of the light-scattering analysis.
The particle is situated in the coordinate origin; incident light comes
from the lower hemisphere. Other parameters are explained in the
text.

correspondence between F and the incident field momentum
in the point where the particle is located.

The incident field configuration for our model is illustrated
in Fig. 1. The incident light beam comes from the lower
hemisphere (z < 0) and illuminates a spherical particle whose
center is situated at the origin of the laboratory frame (xyz).
To represent an inhomogeneous field distribution over the
nominal transverse plane z = 0, the incident field should be
formed by a superposition of plane waves differently oriented
with respect to the nominal longitudinal axis z. The j th plane
wave propagates along axis zj that deviates from the laboratory
axis z by the incidence angle γj ; in what follows, we restrict
ourselves to the case when angles γj lie in the coordinate plane
(yz). With each member of the plane-wave superposition, the
“proper” coordinate frame (xyj zj ) is associated, connected
with the laboratory frame by the relations

zj = z cos γj + y sin γj , yj = −z sin γj + y cos γj . (7)

In its proper frame, the electric and magnetic fields of a
separate plane-wave component are described by the equations

Eaj (x,yj ,zj ) = Ej exp(ikzj ) =
(

Exj

Eyj

)
exp(ikzj ),

Haj (x,yj ,zj ) ≡ Hj exp(ikzj ) =
√

ε
μ

ej × Eaj (zj ),
(8)

where Exj and Eyj are constants, ej is the unit vector for the
zj axis, and k = nω/c is the wave number of the incident
radiation in the medium. The optical field distribution, created
by waves (8) in the common reference plane z = 0, is
generally inhomogeneous and in the laboratory coordinates
can be written in the form

Eaj (x,y) =
⎛
⎝ Exj

Eyj cos γj

−Eyj sin γj

⎞
⎠ exp(ikzj ),

(9)

Haj (x,y) =
√

ε

μ

⎛
⎝ −Eyj

Exj cos γj

−Exj sin γj

⎞
⎠ exp(ikzj ),

where zj is related to y and z by the first Eq. (7).

Here, we restrict ourselves to the case where the superposi-
tion consists of only two plane waves (j = 1, 2) [36], and the
electric and magnetic strengths of the incident optical field are
equal to

E = Ea1 + Ea2, H = Ha1 + Ha2. (10)

Following Ref. [26], one finds the field energy density (4)
as well as the SFD (2) and OFD (3) components:

w = εg

[
|E1|2 + |E2|2 + cos2 γ1 − γ2

2
D (y,z)

]
, (11)

pSx = ge

2c
sin(γ1 − γ2)

[
(E∗

x2Ey1 − E∗
y2Ex1)eik(z1−z2)

+ (E∗
y1Ex2 − E∗

x1Ey2)eik(z2−z1)], (12)

pSy = ge

2c
sin2 γ1 − γ2

2
(sin γ1 + sin γ2) D (y,z) , (13)

pSz = ge

2c
sin2 γ1 − γ2

2
(cos γ1 + cos γ2) D (y,z) , (14)

pOx = 0, (15)

pOy = ge

c

[
|E1|2 sin γ1 + |E2|2 sin γ2

+ 1

2
cos2 γ1 − γ2

2
(sin γ1 + sin γ2) D (y,z)

]
, (16)

pOz = ge

c

[
|E1|2 cos γ1 + |E2|2 cos γ2

+ 1

2
cos2 γ1 − γ2

2
(cos γ1 + cos γ2) D (y,z)

]
, (17)

where

ge = g

√
ε

μ
, D (y,z) = (E∗

x2Ex1 + E∗
y2Ey1)eik(z1−z2)

+ (E∗
x1Ex2 + E∗

y1Ey2)eik(z2−z1). (18)

Equations (11)–(18) show that the simple superposition
of Eq. (10) can serve as a model for a rather general
inhomogeneous field with nonzero spin and orbital flows [26].
Note that in the considered field geometry, due to Eqs. (15)–
(17), the x component of the OFD is absent and the entire
x-directed flow is of a spin nature (12).

B. Scattered field and mechanical action

The light scattered by a spherical particle illuminated by a
plane monochromatic wave can be calculated using the Mie
theory [31,37]. To find the field mechanical action (6), one
should know the scattered field at R→∞. For such conditions,
the scattered field produced by the j th plane wave (9) can be
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found via the relations

Escj = eikR

−ikR
Esj , Hscj = eikR

−ikR
Hsj , (19)

where

Esj =
(

Eθsj

Eφsj

)
=

(
S2 0
0 S1

) (
Eθj

Eφj

)

=
(

S2 0
0 S1

) (
Exj cos φj + Eyj sin φj

−Exj sin φj + Eyj cos φj

)
, (20)

Hsj =
(

Hθsj

Hφsj

)
=

√
ε

μ

(
0 −1
1 0

)(
Eθsj

Eφsj

)
,

S1 ≡ S1(cos θj ) and S2 ≡ S2(cos θj ) are elements of the
scattering matrix [31,37] dependent on the wave number k,
particle radius a, and the complex refractive index m of the
particle material relative to the ambient medium. In this paper,
the consideration is restricted to the most widespread case of
nonmagnetic particles whose permeability is 1. In Eq. (20),
the Cartesian and spherical coordinates are measured in the
frame (x, yj , zj ) associated with the j th incident plane wave
(cf. Fig. 1). The scattered field is completely transverse,
i.e., all the components of Eq. (20) are orthogonal to the
unit vector eR . In the simplest case of Rayleigh scattering
when the particle is much smaller than the wavelength, we
have

S1 = −i (ka)3 m2 − 1

m2 + 2
, S2 = S1 cos θj . (21)

In more general situations, S1 and S2 are expressed via
the spherical vector harmonics [31]. Each plane wave of
the incident field is scattered independently, so the resulting
scattered field can be found by vector summation of the
results obtained from Eqs. (19) and (20). In view of relations
(19) and for future convenience, we represent it in the
form

Esc1 + Esc2 = Es

eikR

kR
, Hsc1 + Hsc2 = Hs

eikR

kR
. (22)

The auxiliary quantities Es and Hs represent the “meaning-
ful” parts of the scattered-field amplitudes—slowly varying
envelopes imposed over the standard spherical wave factor
eikR/kR.

Now, with allowance for Eq. (10), Eq. (5) can be written as

�p = g

ckR
Re

[
E∗

s × Hs

kR
+ E∗

1 × Hse
ik(R−z1) + E∗

2 × Hs

× eik(R−z2) + E∗
s × H1e

−ik(R−z1) + E∗
s × H2e

−ik(R−z2)

]
,

(23)

which should be substituted into Eq. (6). The first term in
the brackets describes the momentum of the scattered field
and attracts separate interest. For further references, it would
be suitable to represent its contribution to the ponderomotive
force in Eq. (6) as a sum of two terms that express the
momentum flux into the forward P( + ) and backward P(–)
hemisphere, respectively:

Fs = − g

n (kR)2

∮
AR

E∗
s × HsdA = −Ps (+) − Ps (−) , (24)

where

Ps (±) = g

μk2

∫ 2π

0
dφ

∫ (3∓1)π/4

(1∓1)π/4
(|Eθs |2 + |Eφs |2)

× eR (θ,φ) sin θdθ ; (25)

the latter expression is derived using Eq. (20).
In principle, the “scattering-field force” of Eq. (24) can

be evaluated analytically, at least in the Rayleigh regime
when Eqs. (21) are fulfilled; however, the presence of two
plane waves (10) and the necessity to switch between the
three coordinate frames makes this way too cumbersome.
Fortunately, due to the well-developed methods for calculation
of the scattering matrix (20) [31], the problem can easily
be solved numerically. This is not the case for the other
terms of Eq. (23) whose numerical integration is practically
impossible because of the oscillating interference factors
exp[±ik(R − zj )]. Nevertheless, their expressions for R→∞
can be found analytically via the asymptotic approximation of
the integral∫ π

0
U (θ ) e±ikR(1−cos θ ) sin θdθ

= e±ikR

∓ikR

[
e±ikRU (θ )θ=π− e∓ikRU (θ )θ=0

]+ O

(
1

k2R2

)
,

where U (θ ) is an arbitrary function with sufficiently regular
behavior. When applied to summands of Eq. (23), this formula
gives

R2Re
∫ 2π

0
dφj

∫ π

0

[
E∗

j × Hse
ik(R−zj ) + E∗

s × Hj e
−ik(R−zj )

]
sin θjdθj

= R2 2π

kR
Im

[
e2ikR(E∗

j × Hs)θj =π − (E∗
j × Hs)θj =0 − e−2ikR(E∗

s × Hj )θj =π + (E∗
s × Hj )θj =0

]
. (26)

Further, since Hj = ezj × Ej and Hs = eR × Es , the fol-
lowing relations fulfill

E∗
s × Hj = E∗

s × (ezj × Ej ) = ezj (E∗
s · Ej ) − Ej (ezj · E∗

s ),
E∗

j × Hs = E∗
j × (eR × Es) = eR(E∗

j · Es) − Es(eR · E∗
j ).

(27)

Note that at position θj = 0, eR = ezj , and at θj = π , eR =
−ezj (cf. Fig. 1). Accordingly, in these points the second terms
of Eq. (27) vanish, and

(E∗
j × Hs)θj =0 = (E∗

s × Hj )∗θj =0, (E∗
s × Hj )θj =π

= −(E∗
j × Hs)

∗
θj =π . (28)

023847-4



SCATTERING OF INHOMOGENEOUS CIRCULARLY . . . PHYSICAL REVIEW A 86, 023847 (2012)

As a result, the contributions at points θj = π in expression
(26) tend to zero and, combining Eqs. (26), (28), (23), and (6),
one obtains

F = Fs − g
4π

nk2
Im

[
(E∗

s × H1)θ1=0 + (E∗
s × H2)θ2=0

]
, (29)

where Fs is given by Eqs. (24) and (25), Es is determined
by Eqs. (22), (19), and (20), and Hj is the amplitude of the
incident plane-wave component as defined in Eq. (8). Note
that due to the accepted incident field geometry (Fig. 1), both
terms in brackets in Eq. (29) are vectors belonging to plane
(yz), and the x component of the total force exerted on the
particle, Fx = Fxs , is fully determined by the scattered-field
force (24).

III. MECHANICAL PROPERTIES
OF THE SCATTERED FIELD

The model described by Eqs. (9) and (11)–(18) is applicable
to a number of practical situations involving incident fields
with inhomogeneous amplitude-phase profile and polarization
[27]. For the detailed analysis, we choose the simplest
configurations that enable the analysis of the special features
of the SFD and TFD [26]. The first example is realized by a
symmetric superposition of circularly polarized plane waves
(9) that appears if

γ1 = −γ2 = γ, (30)

(
Ex1

Ey1

)
= E0

(
1
σ i

)
, (31)

and both waves are identical with possible phase shift, i.e.,(
Ex2

Ey2

)
= exp (iδ)

(
Ex1

Ey1

)
, (32)

where σ = ±1 is the polarization helicity (spin number). In
the paraxial case (γ � 1), to which we are restricted in this
paper, terms ∼γ 2 and of higher orders can be neglected, and
Eqs. (11)–(18) reduce to [26]

w = 4εg |E0|2 (1 + cos 2�) , (33)

pSx = −4ge

c
σγ |E0|2 sin 2�, (34)

pSy = pSz = pOy = pOx = 0,

pOz = 4ge

c
|E0|2 (1 + cos 2�) , (35)

with

� = γ ky − δ

2
. (36)

These equations characterize the field with inhomogeneous
energy distribution over the reference plane z = 0 [Fig. 2(a)].
The OFD (35) of this field is directed along the propagation
axis z and is completely longitudinal; the internal OFD is
absent. As should be expected under the paraxial conditions
[12], the longitudinal momentum (35) and the energy density
(33) are connected by the standard relation pz = nw/c. The
longitudinal momentum produces the usual light-pressure

FIG. 2. (Color online) Mechanical forces acting on a probe
particle situated in plane z = 0 and illuminated by the superposition
of two plane waves with (a) different directions, resulting in the
inhomogeneous circularly polarized field described by Eqs. (30)–(35)
and (b) coinciding directions, resulting in a spatially homogeneous
energy distribution but having inclined wave front, according to
Eqs. (44), (45). Further explanations are found in the text.

force Fz pushing the particle forward; the inhomogeneous in-
tensity is the source of the gradient force F

grad
y [(see Fig. 2(a)],

which was analyzed elsewhere [26]. Both these forces are not
the subjects of the present consideration; instead, we intend
to concentrate on the transverse SFD (34), which represents
the most interesting feature of the discussed field model. The
very appearance of the x-directed transverse momentum in this
field geometry seems counterintuitive, though it immediately
follows from the spin-flow theory [7] and is quite expectedly
[9,12] oriented along the constant-energy lines y = const.

Its physical nature is partially elucidated by considering
the scattering-field momentum flux behavior with increasing
particle-size parameter,

ξ = ka, (37)

where a is the particle radius. We calculated the scattered-
field parameters of Eqs. (24) and (25) for two sorts of
spherical particles suspended in water (ε = 1.77, μ = 1,
n = 1.33): metallic (gold in water, relative refraction index
m = 0.32 + 2.65i [37]) and dielectric (latex in water, m =
1.12); the radiation wave number is k = 1.33 × 105 cm−1

(He-Ne laser). The results obtained for the field model of
Eqs. (30)–(32) are given by the curves P +

sx(±) in Fig. 3;
note that only results for the field model with σ = +1 in
Eq. (31) are presented because switching the polarization
helicity to σ = −1 causes nothing but the sign reversal,
P −

sx(±) = −P +
sx(±). For comparison, in Fig. 3 the results are

also presented that were obtained for different cases of the
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FIG. 3. (Color online) Fourth root of the normalized momentum
flux Ps/P0 [see Eqs. (25) and (43)] components of the field
scattered by a spherical (a) metallic and (b) dielectric particle,
suspended in water, vs the particle-size parameter (37), calculated
for the conditions of Eqs. (41), (42). Each curve is marked by
the corresponding component notation: subscripts (x, y) denote the
momentum flux Cartesian component; superscripts (x, y, 45, + )
denote the incident field polarization as indicated by Eqs. (31) and
(38)–(40). Solid (dashed) lines describe the momentum flux into the
forward (backward) hemisphere; the inset shows magnification of the
dashed rectangle in panel (b). In both cases (a) and (b), curves P x

sx(±)
and P y

sx(±) coincide with the zero line, and curves P 45
sy (±) and P +

sy (±)
visually merge; however, the small difference between the forward-
and backward-scattered contributions can be traced in the inset.

linearly polarized incident beam, which occur if, instead of
Eq. (31), the following relations take place:

Ey1 = 0, Ex1 = E0 
= 0 (38)

[“x polarization,” curves P x
sx (±) and P x

sy (±)],

Ex1 = 0, Ey1 = E0 
= 0 (39)

[“y polarization,” curves P
y
sx (±) and P

y
sy (±)], and

Ey1 = Ex1 = E0 
= 0 (40)

[“45◦ polarization,” curves P 45
sx (±) and P 45

sy (±)]. Upon calcu-
lations, condition

2� = −π/2 (41)

[y = 0, δ = π/2 or δ = 0, y = π/(4kγ )] was chosen which
corresponds to the maximum absolute value of the spin flow

(34); the angle between the two interfering plane waves was
assumed to equal

γ = 0.01 rad. (42)

To eliminate the influence of the incident beam intensity
and to decrease the range of the presented data, these are
normalized by dividing the calculated quantities by the total
momentum flux of the incident field through the particle
cross section, which in the considered field configurations of
Eqs. (30)–(32) and (38)–(40) equals

P0 = 2g

μ
(|Ex1|2 + |Ey1|2)(1 + cos 2�)πa2. (43)

Additionally, each curve in Fig. 3 represents the fourth root
of the corresponding momentum flux value.

The curves P ···
sx,sy(+) and P ···

sx,sy(−) in Fig. 3 represent the
transverse Cartesian components of the front and rear half-
sphere momentum fluxes calculated via Eq. (25) for differently
polarized fields. Usually, in the small-particle limit (Rayleigh
scattering regime [31]), the scattering is considered symmetric,
in agreement with Eq. (21). This implies that the scattered
radiation carries no transverse momentum flux and, in fact, for
linearly polarized incident light, the results of Fig. 3 confirm
this suggestion with rather high accuracy, at least until ξ = 0.2,
where the particle-size influence becomes perceptible. Even
beyond this range limit, the forward- and backward-scattered
momentum fluxes are almost similar for all cases with linearly
polarized incident field as presented in Fig. 3.

However, when the particle is illuminated by circularly
polarized light, both the forward- and backward-scattered
momentum fluxes possess noticeable x-directed components
[curves P +

sx(±) in Figs. 3(a) and 3(b)], much more intense
than any analogous contribution emerging under the linearly
polarized illumination. According to Fig. 3 and with allowance
for the normalization factor (43), quantities |P +

sx(±)| grow
as a6 with the particle size, which is of the same order
as is the total scattered intensity [31], and which strongly
exceeds the scattered-field anisotropy that may appear in
a linearly polarized field. Besides, the forward P +

sx(+) and
backward P +

sx(−) transverse momentum fluxes essentially
differ, even by the sign. These effects can be attributed to the
optical vortex generation (spin-to-orbital angular momentum
conversion) upon scattering of light with circular polarization
[38,39], which directly follows from Eqs. (20) and (21). In
the laboratory frame, the forward-scattered and backward-
scattered vortices possess opposite helicities, and this is the
source of the scattering asymmetry. For a single incident
plane wave, this asymmetry is “hidden” in the hemisphere
momentum fluxes due to integration over the azimuth angle φ

in Eq. (25), but interference of the scattered fields produced
by the two plane waves makes it visible. One can expect
the revealed forward-backward asymmetry to be a general
feature inherent in scattering of any spatially inhomogeneous
elliptically polarized beams in the Rayleigh scattering regime
[26].

This effect can be considered as an additional manifestation
of the spin-orbit interaction upon light scattering, whose
observation requires a spatially inhomogeneous incident field.

What is even more important, the absolute values of P +
sx(+)

and P +
sx(−) are not exactly the same, and their difference is
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just the source of the “net” scattered-field momentum flux
that can be determined via Eq. (24). This momentum flux is
“balanced” by the recoil force exerted on the particle—the
physical reason for the translational ponderomotive influence
of the inhomogeneous circularly polarized optical field, which
can be treated as the mechanical action of the spin-energy
flow [26]. The comparative study of this mechanical action is
the subject of the next section.

IV. COMPARISON OF THE MECHANICAL ACTIONS
OF THE SPIN- AND ORBITAL-ENERGY FLOWS

In this section, we apply the general procedure formulated
in Sec. II B, Eqs. (24), (25), and (29), to the calculation of the
mechanical forces exerted on the probe particles and confront it
with the energy flow pattern in the incident circularly polarized
field. Recently, this procedure was described in detail [26], and
now we follow it with no essential modifications.

An impressive feature of the calculated results is the
“counterintuitive” x-directed force represented by curves F±

sp

in Figs. 4(a) and 4(b) and by arrows F±
sp in Fig. 2(a):

Apparently, the field configuration of Eqs. (8)–(10) and (30)–
(32) looks symmetric with respect to the x-axis reversal, and it
is the “invisible” instant field vector rotation that destroys this
symmetry. Moreover, this force changes sign upon switching
the polarization handedness and vanishes in linearly polarized
fields1 [which directly follows from near-zero values of
the partial momentum fluxes P x

sx(±), P
y
sx(±) presented in

Figs. 3(a) and 3(b)]. All this is akin to the behavior of the
SFD (34) which, in accordance with Eqs. (33)–(35), represents
the only x-directed energy flow contribution emerging in the
incident field specified by Eqs. (30)–(32); besides, there is
no energy gradient in the x direction. That is why it is quite
natural to associate the x-directed force F±

sp with the SFD of
the incident field and consider it as the mechanical action of
the spin-energy flow.

The next step is to compare this force with the orbital flow
action. Unfortunately, in the field that satisfies Eqs. (30)–(32),
the transverse OFD is absent, and the y-directed force (which
really exists) [Fig. 2(a)] was identified as the gradient force
[26], which is useless for our purpose of analyzing the
mechanical action owing to the internal energy flows. To avoid
this inconvenience, one could address more complex field
configurations in which the orbital and spin internal flows
are present simultaneously (see, e.g., Refs. [9,10]). However,
in such situations not only the force calculation will be much
more cumbersome and time consuming, but also the inter-
pretation of the numerical results and separation between the
SFD-induced and OFD-induced force contributions becomes
rather difficult.

A more promising way is to find a simple field configuration
in which the OFD-induced action Forb can be easily identified,
and its correspondence with the orbital flow distribution
can be established. If, additionally, the local OFD value is

1In fact, when the linear polarization of the incident field differs
from “pure” x or y polarization, the specific x-directed force appears
but it is not related to any energy flow constituent and can be attributed
to the polarization inhomogeneity [26].
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FIG. 4. (Color online) Comparison of the mechanical actions
associated with the spin and orbital internal energy flows for (a)
metal and (b) dielectric spherical particle suspended in water. Each
curve represents the force dependence of the particle-size parameter
(37). The SFD-induced forces F ±

sp are calculated as x components
of the force experienced by a particle in the field characterized by
Eqs. (30)–(36) for the conditions of Eqs. (41), (42) [cf. Fig. 2(a)];
their signs change upon switching the polarization handedness from
σ = 1 (solid lines) to σ = −1 (dashed lines). The OFD-induced
contributions Forb are determined as the y components of the force
exerted on a particle in the field characterized by Eqs. (44) and (41),
(42) [cf. Fig. 2(b)].

numerically equal to the SFD in the model of Eqs. (31)–(36),
then the calculated forces Forb and F±

sp can be treated as
“pure” manifestations of the orbital- and spin-flow mechanical
actions, respectively. The fact that Forb and F±

sp are realized
in different optical fields is not important because, if there
exist any regularities of the ponderomotive effects inherent
in the SFD (OFD) per se, their manifestations should be
identical provided that the local SFD (OFD) values are the
same, regardless of all other field parameters and details.

Formally, a simple configuration with obviously identifiable
OFD action can be realized based on the same two-plane-wave
field of Eqs. (10)–(18). All one must do is to accept, in contrast
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to Eq. (30), the condition

γ1 = γ2 = γ. (44)

Here the SFD vanishes and the whole transverse momentum
is of orbital nature and equals

pOy = 4ge

c
γ |E0|2 (1 + cos δ) , (45)

which signifies that, keeping the same values of γ , E0 and
choosing |sin 2�| = 1 + cos δ [this is realized, e.g., if δ = π/2
and condition (41) fulfills], the y-directed OFD (45) in the field
configuration of Eqs. (44), (31), and (32) equals the x-directed
SFD (34) in the field configuration of Eqs. (30)–(32). Hence,
one can verify the equivalence and/or discrepancies between
the mechanical actions of the spin- and orbital-energy flows
merely by juxtaposing the x-directed force F±

sp calculated as
described above, and the y-directed force Forb calculated for
the incident field configuration specified by Eqs. (44), (31),
and (32). Note that in this situation the incident momentum
flux through the particle cross section,

P0 = 2g

μ
(|Ex1|2 + |Ey1|2)(1 + cos δ)πa2

= 4g

μ
|E0|2 (1 + cos δ) πa2, (46)

numerically coincides with the normalizing divider (43). Thus
the normalization of Forb via division by the quantity (46)
is compatible with the normalization of F±

sp by (43) and the
normalized force values presented in Fig. 4 provide a correct
comparison.

One may notice that condition (44) reduces the two-plane-
wave superposition to the case of a single plane wave that
approaches the nominal observation plane z = 0 at a small
angle γ . In this field, the energy is distributed homogeneously
and the OFD (45) is, in fact, the transverse projection of the
plane-wave momentum directed normally to the wave front
[Fig. 2(b)]. This circumstance does not limit the generality
of the consideration: It complies with the common notion
that the OFD represents the transverse energy transportation
of the same nature as the “main” longitudinal energy flow
[12], and that the OFD-induced mechanical action is nothing
but a sort of transverse light pressure. Such origination of
the transverse ponderomotive action is reflected in Fig. 2(b)
by decomposition of the light-pressure vector F into the
longitudinal Fz and transverse Fy = Forb components.

In view of the above remarks, the specific features of the
SFD- and OFD-induced mechanical actions can be investi-
gated via the comparative analysis of curves F±

sp and Forb

in Figs. 4(a) and 4(b). The first and quite expected difference
between the two is that, both for metallic [Fig. 4(a)] and dielec-
tric [Fig. 4(b)] particles, the spin-flow contribution changes
sign together with the polarization handedness (curves F+

sp

and F−
sp), while the orbital flow action does not. Noteworthy,

in case of dielectric particles the spin-induced force is directed
oppositely to the spin-energy flow (the similar behavior was
predicted recently for dielectric particles in air [26]). For
example, Eq. (34) dictates that pSx is positive at σ = 1
and under accepted conditions y = 0, δ = π/2, whereas
curve F+

sp of Fig. 4(b) lies in the negative half-plane. This

feature is associated with the specific spatial asymmetry of
the scattered momentum, which can be seen by comparison of
curves P x

sx(+) and P x
sx(−) in Fig. 3. For dielectric particles,

Fig. 3(b), the absolute contribution of the front half-sphere
[curve P x

sx(+)] is a bit higher than that of the rear half-sphere
[curve P x

sx(−)] whereas for conducting particles, Fig. 3(a), the
reverse relation is observed.

In all other aspects, the similarities and discrepancies
of the spin- and orbital-flow actions are not immediately
recognized. Both contributions depend on the particle size
and optical properties, and conditions are possible when one
of the discussed contributions is prevailing: for example, very
small particles (ξ � 1) “feel” the OFD much stronger than
the SFD is felt. Probably, the difference in the F±

sp and Forb

dependences on ξ can be used for separate detection of the
spin- and orbital-energy flows.

The curves in Fig. 4 demonstrate the general rule that any
light field’s mechanical action is essentially mediated by the
probe particle size and properties. In this context, the results
for very small particles are more representative since their
dependence on the particle size and refractive index is more
regular and is not modified by resonance phenomena [31].
The corresponding data are presented in Fig. 5. Among other
things, they reveal the difference between the OFD action
exerted on the dielectric (Forb ≈ a6) and the metallic (Forb ≈
a3) particles. This can be explained by the prevailing role
of light absorption in the light-pressure effect on conductive
particles, whereas the OFD-induced action experienced by
a dielectric particle is completely due to elastic scattering
[31]; the same reason (in combination with the small relative
refractive index) underlies the appreciably lower absolute
force values in case of dielectric particles; cf. the vertical
scales in Figs. 4(a) and 4(b). Another important observation
involves the peculiar regularity of the SFD-induced action,
which for both considered cases satisfies the relation F±

sp ≈ a8.

FIG. 5. (Color online) Initial segments of curves, presented by
Fig. 4, in double logarithmic scale. Solid lines: metallic particle
[Fig. 4(a)], dashed lines: dielectric particle [Fig. 4(b)]. Orders of the
force growth with the particle radius a are indicated with allowance
for the normalization factor P0 (43). For comparison, the behavior of
the gradient force F grad

y [Fig. 2(a)] is included.
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Undoubtedly, this feature is related to the special mechanism
of the SFD-induced ponderomotive effect and reflects its
particular physical nature.

Interestingly, in the electric-dipole approximation [28,29,
34], the entire mechanical action experienced by Rayleigh
particles consists of the gradient force (first summand of Eq.
(5) of Ref. [34]) and the OFD-induced force (the “scattering
force”—second summand of Eq. (5) of [34]—is proportional
to the “electric” part of the OFD, without restoring the
“electric-magnetic democracy” [10]). In fact, the apparently
spin-dependent “field gradient force” (Eqs. (6) and (8) of
[34]), named also “curl force associated with the nonuniform
distribution of the spin angular momentum” (Eq. (11) of
Ref. [29]) can be introduced but it merely cancels out the
contribution of pS [(Eq. (2)] contained in the TFD-proportional
term which Simpson and Hanna call “dissipative radiation
force” (Eq. (7), Ref. [34]) and which Albaladejo et al. term
as the “traditional radiation pressure” (Eq. (13), Ref. [29]). As
a result, the genuine SFD-induced mechanical action escapes
from the known dipole-based calculations. In this context, the
particle-size dependence of the OFD-induced forces seen in
Fig. 5 (∼a3 for conductive and ∼a6 for dielectric particles)
is completely justified by the behavior of the imaginary part
of the polarizability for absorbing and nonabsorbing particles
(Eq. (11) of [34]).

The eighth power dependency on the particle size testifies
that the SFD-induced mechanical action is not of dipole nature
and only appears in higher degrees of the multipole expansion.
Note, however, that the relative weakness of the spin-flow
force in the Rayleigh scattering region does not mean that it is
always smaller than the one associated with orbital flow: As
Fig. 4 testifies, at ξ > 2, both forces are quite comparable.

In view of these facts, recent suggestions on the mechanical
equivalency of the spin- and orbital-energy flows [26] should
be essentially corrected, if not rejected. Actually, both the
spin and orbital contributions to the energy flow are able
to cause translational motion of the probe particles but the
quantitative characters of the spin-induced and the orbital-
induced motions and their dependences on the particle size
and properties are rather different. Accordingly, the SFD and
OFD can experimentally be distinguished employing probe
particles with deliberately chosen sizes and properties. Such
a choice requires a detailed analysis of the expected behavior
for various sorts of particles, which can be performed based
on the approach presented in this paper.

V. CONCLUSION

The results of this work are based on a model of a
spatially inhomogeneous optical field [26] that is formed
by superposition of two plane waves. Despite its simplicity,
the model adequately represents some general properties of
inhomogeneous fields, including the main regularities inherent
in internal energy flow and its spin and orbital parts. By
using the Mie theory, mechanical characteristics of the field
scattered by a nonmagnetic probe particle placed within the
spatially inhomogeneous circularly polarized light beam are
studied. In particular, the forward- and backward-scattering
field asymmetry, observable in the Rayleigh scattering regime
(for particle sizes much less than the radiation wavelength)

and associated with the spin energy flow of the incident
beam, has been revealed and analyzed. This spin-flow-induced
asymmetry is closely related to the known effect of the spin-
orbital angular momentum conversion for Rayleigh scattering
[38,39], and can be treated as a curious manifestation of the
spin-orbit interaction of light.

By means of numerical calculations, the ponderomotive
forces exerted on spherical microparticles with conductive
and dielectric properties, exposed to light fields with different
configurations, are also investigated. Two specific incident
field configurations were considered in detail: (i) spatially in-
homogeneous beam with the well-defined transverse spin flow
and (ii) spatially homogeneous field with a transverse orbital
flow (inclined plane wave). Comparison of the ponderomotive
actions, performed in both cases, permitted us to disclose the
special features of the mechanical action inherent in the spin
and orbital parts of the internal energy flow. In particular,
for the subwavelength (Rayleigh) particles, the orbital-flow
force grows as a3 for conducting and as a6 for dielectric
particle with radius a, in compliance with the electric-dipole
interaction mechanism [28,34]; the spin-flow force appears in
higher multipole orders and behaves as a8 in both cases. As
well, our simulations show that, for any particle sizes, the spin
flow may “pull” dielectric particles against its own direction
whereas the orbital flow always “pushes” probe particles along
the energy transportation lines. These differences reflect the
unique ways in which the spin and orbital momenta of light are
transmitted to material bodies, in particular, the essential role
of nondipole interactions in the spin-flow mechanical action.

We hope that the results of this work can be useful
for experimental identification and separate investigation of
the spin and orbital parts of the internal energy flow in
light fields via the probe particle’s motion. Concurrently,
our results indicate some difficulties and limitations of the
approaches based on the ponderomotive action and probe
bodies. Primarily, there are a number of “parasite” sources
of mechanical influences that are not related with the field
momentum or any of its constituents and usually mask
their contributions. Among various factors mentioned in the
Introduction, here we emphasize the non-Poynting source of
the electromagnetic origin that plays an important role in any
inhomogeneous light field: the gradient force. According to
Fig. 5 (the lines F

grad
y ) the gradient force, generally, exceeds

the energy-flow-induced contributions, and this circumstance
should be properly addressed in any experiment (see also
Refs. [26,28,29]). Another essential issue is that beyond the
Rayleigh scattering range of the probe particle sizes, the
electromagnetic field-induced mechanical action depends on
the particle radius and on the complex refractive index in
a rather complex and apparently irregular fashion, strongly
affected by the field inhomogeneity, and this makes it very
difficult to establish an accurate numerical correspondence
between the transverse ponderomotive force and the internal
energy flow component which, theoretically, gives rise to this
force. In most cases, the resulting force value is rather far
from the naı̈ve expectations that the mechanical action is
proportional to the local value of the incident field momentum
density in the point where the particle is placed [26]. In essence,
in such situations not the field momentum (energy flow) per se
but the electromagnetic field as a whole acts as a motive power,
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and it seems doubtful that the observable force experienced by
a particle can be definitely associated with the transverse field
momentum at all.

Finally, we emphasize that the model of an inhomogeneous
optical field described in this paper, even in its simplest version,

provides consistent deductions related to the mechanical
actions of spatially inhomogeneous vector light fields. The
presented model can easily be generalized to describe more
complicated situations to reflect additional fine features of the
real optical fields.
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