21,539 research outputs found

    Viscoelastic Behavior of Solid 4^4He

    Full text link
    Over the last five years several experimental groups have reported anomalies in the temperature dependence of the period and amplitude of a torsional oscillator containing solid 4^4He. We model these experiments by assuming that 4^4He is a viscoelastic solid--a solid with frequency dependent internal friction. We find that while our model can provide a quantitative account of the dissipation observed in the torsional oscillator experiments, it only accounts for about 10% of the observed period shift, leaving open the possibility that the remaining period shift is due to the onset of superfluidity in the sample.Comment: 4 pages, 3 figure

    Mining Fix Patterns for FindBugs Violations

    Get PDF
    In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair.Comment: Accepted for IEEE Transactions on Software Engineerin

    Explicit CP violation in a MSSM with an extra U(1)′U(1)'

    Get PDF
    We study that a minimal supersymmetric standard model with an extra U(1)′U(1)' gauge symmetry may accommodate the explicit CP violation at the one-loop level through radiative corrections. This model is CP conserving at the tree level and cannot realize the spontaneous CP violation for a wide parameter space at the one-loop level. In explicit CP violation scenario, we calculate the Higgs boson masses and the magnitude of the scalar-pseudoscalar mixings in this model at the one-loop level by taking into account the contributions of top quarks, bottom quarks, exotic quarks, and their superpartners. In particular, we investigate how the exotic quarks and squarks would affect the scalar-pseudoscalar mixings. It is observed that the size of the mixing between the heaviest scalar and pseudoscalar Higgs bosons is changed up to 20 % by a complex phase originated from the exotic quark sector of this model.Comment: 19 pages, 3 figure

    The Second Virial Coefficient of Spin-1/2 Interacting Anyon System

    Full text link
    Evaluating the propagator by the usual time-sliced manner, we use it to compute the second virial coefficient of an anyon gas interacting through the repulsive potential of the form g/r2(g>0)g/r^2 (g > 0). All the cusps for the unpolarized spin-1/2 as well as spinless cases disappear in the ω→0\omega \to 0 limit, where ω\omega is a frequency of harmonic oscillator which is introduced as a regularization method. As gg approaches to zero, the result reduces to the noninteracting hard-core limit.Comment: 9 pages, 2 figs include

    Higgs bosons of a supersymmetric U(1)′U(1)' model at the ILC

    Full text link
    We study the scalar Higgs sector of the next-to-minimal supersymmetric standard model with an extra U(1), which has two Higgs doublets and a Higgs singlet, in the light leptophobic Z′Z' scenario where the extra neutral gauge boson Z′Z' does not couple to charged leptons. In this model, we find that the sum of the squared coupling coefficients of the three neutral scalar Higgs bosons to ZZZZ, normalized by the corresponding SM coupling coefficient is noticeably smaller than unity, due to the effect of the extra U(1), for a reasonable parameter space of the model, whereas it is unity in the next-to-minimal supersymmetric standard model. Thus, these two models may be distinguished if the coupling coefficients of neutral scalar Higgs bosons to ZZZZ are measured at the future International Linear Collider by producing them via the Higgs-strahlung, ZZZZ fusion, and WWWW fusion processes.Comment: 12 pages, 2 figures, 1 table, PR

    Sampling the progression of domain-initial denasalization in Seoul Korean

    Get PDF
    Word-initial nasals in Korean are known to exhibit prosody-sensitive denasalization. The literature on the subject is still scarce and even the basic description of the process is debated. This study tested the speculation that inconsistencies in the literature may be explained if certain features of denasalization have developed relatively recently as part of an ongoing sound change. Based on apparent-time data from thirty-two speakers of Seoul Korean, the study explored the development of denasalization over a fifty-year period. The phonetic manifestations of domain-initial nasals were examined, along with the effects of prosodic position, place of articulation, and the height of the following vowel. The results revealed that denasalization has advanced rapidly over time, acquiring more plosive-like features of devoicing as well as a complete lack of nasality. Alveolar nasals before a high vowel were most likely to show denasalization and devoicing. Interestingly, the cumulative effect of prosody became weakest and partial denasalization was least likely for the younger group. Based on these results, we speculate that Korean denasalization is in the process of being stabilized into a discrete phrase-level process from a more general, gradient phenomenon of domain-initial strengthening, consistent with the theory of the life cycle of phonological processes. Keywords: denasalization; domain-initial strengthening; articulatory strengthening; fortition; Korean; sound change; rule scattering; life cycle of phonological processes; apparent tim

    A Comprehensive Analysis of 5G Heterogeneous Cellular Systems operating over κ\kappa-μ\mu Shadowed Fading Channels

    Get PDF
    Emerging cellular technologies such as those proposed for use in 5G communications will accommodate a wide range of usage scenarios with diverse link requirements. This will include the necessity to operate over a versatile set of wireless channels ranging from indoor to outdoor, from line-of-sight (LOS) to non-LOS, and from circularly symmetric scattering to environments which promote the clustering of scattered multipath waves. Unfortunately, many of the conventional fading models adopted in the literature to develop network models lack the flexibility to account for such disparate signal propagation mechanisms. To bridge the gap between theory and practical channels, we consider κ\kappa-μ\mu shadowed fading, which contains as special cases, the majority of the linear fading models proposed in the open literature, including Rayleigh, Rician, Nakagami-m, Nakagami-q, One-sided Gaussian, κ\kappa-μ\mu, η\eta-μ\mu, and Rician shadowed to name but a few. In particular, we apply an orthogonal expansion to represent the κ\kappa-μ\mu shadowed fading distribution as a simplified series expression. Then using the series expressions with stochastic geometry, we propose an analytic framework to evaluate the average of an arbitrary function of the SINR over κ\kappa-μ\mu shadowed fading channels. Using the proposed method, we evaluate the spectral efficiency, moments of the SINR, bit error probability and outage probability of a KK-tier HetNet with KK classes of BSs, differing in terms of the transmit power, BS density, shadowing characteristics and small-scale fading. Building upon these results, we provide important new insights into the network performance of these emerging wireless applications while considering a diverse range of fading conditions and link qualities
    • …
    corecore