In this paper, we first collect and track a large number of fixed and unfixed
violations across revisions of software.
The empirical analyses reveal that there are discrepancies in the
distributions of violations that are detected and those that are fixed, in
terms of occurrences, spread and categories, which can provide insights into
prioritizing violations.
To automatically identify patterns in violations and their fixes, we propose
an approach that utilizes convolutional neural networks to learn features and
clustering to regroup similar instances. We then evaluate the usefulness of the
identified fix patterns by applying them to unfixed violations.
The results show that developers will accept and merge a majority (69/116) of
fixes generated from the inferred fix patterns. It is also noteworthy that the
yielded patterns are applicable to four real bugs in the Defects4J major
benchmark for software testing and automated repair.Comment: Accepted for IEEE Transactions on Software Engineerin