1,308 research outputs found
Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale
We present results of Reynolds-averaged turbulence model simulation on the
problem of magnetic reconnection. In the model, in addition to the mean
density, momentum, magnetic field, and energy equations, the evolution
equations of the turbulent cross-helicity , turbulent energy and its
dissipation rate are simultaneously solved to calculate the rate
of magnetic reconnection for a Harris-type current sheet. In contrast to
previous works based on algebraic modeling, the turbulence timescale is
self-determined by the nonlinear evolutions of and , their
ratio being a timescale. We compare the reconnection rate produced by our
mean-field model to the resistive non-turbulent MHD rate. To test whether
different regimes of reconnection are produced, we vary the initial strength of
turbulent energy and study the effect on the amount of magnetic flux
reconnected in time.Comment: 10 pages, 7 figure
Note on Triangle Anomalies and Assignment of Singlet in 331-like Model
It is pointed out that in the like model which uses both fundamental
and complex conjugate representations for an assignment of the representations
to the left-handed quarks and the scalar representation to their corresponding
right-handed counterparts, the nature of the scalar should be taken into
account in order to make the fermion triangle anomalies in the theory
anomaly-free, i.e. renormalizable in a sense with no anomalies, even after the
spontaneous symmetry breaking.Comment: 8 page no figures, acknowledgments adde
An Upsilon Point in a Spin Model
We present analytic evidence for the occurrence of an upsilon point, an
infinite checkerboard structure of modulated phases, in the ground state of a
spin model. The structure of the upsilon point is studied by calculating
interface--interface interactions using an expansion in inverse spin
anisotropy.Comment: 18 pages ReVTeX file, including 6 figures encoded with uufile
Alteration of Striatal Dopaminergic Neurotransmission in a Mouse Model of DYT11 Myoclonus-Dystonia
Background: DYT11 myoclonus-dystonia (M-D) syndrome is a neurological movement disorder characterized by myoclonic jerks and dystonic postures or movement that can be alleviated by alcohol. It is caused by mutations in SGCE encoding e-sarcoglycan (e-SG); the mouse homolog of this gene is Sgce. Paternally-inherited Sgce heterozygous knockout (Sgce KO) mice exhibit myoclonus, motor impairment and anxiety- and depression-like behaviors, modeling several clinical symptoms observed in DYT11 M-D patients. The behavioral deficits are accompanied by abnormally high levels of dopamine and its metabolites in the striatum of Sgce KO mice. Neuroimaging studies of DYT11 M-D patients show reduced dopamine D2 receptor (D2R) availability, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out. Methodology/Principal Findings: The protein levels of striatal D2R, dopamine transporter (DAT), and dopamine D1 receptor (D1R) in Sgce KO mice were analyzed by Western blot. The striatal dopamine release after amphetamine injection in Sgce KO mice were analyzed by microdialysis in vivo. The striatal D2R was significantly decreased in Sgce KO mice without altering DAT and D1R. Sgce KO mice also exhibited a significant increase of dopamine release after amphetamine injection in comparison to wild-type (WT) littermates. Conclusion/Significance: The results suggest e-SG may have a role in the regulation of D2R expression. The loss of e-S
Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice
DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit
NMR studies of Successive Phase Transitions in Na0.5CoO2 and K0.5CoO2
59Co- and 23Na-NMR measurements have been carried out on polycrystalline and
c-axis aligned samples of Na0.5CoO2, which exhibits successive transitions at
temperatures T = 87 K (= Tc1) and T = 53 K (= Tc2). 59Co-NMR has also been
carried out on c-axis aligned crystallites of K0.5CoO2 with similar successive
transitions at Tc1 ~ 60 K and Tc2 ~ 20 K. For Na0.5CoO2, two sets of three NMR
lines of 23Na nuclei explained by considering the quadrupolar frequencies nuQ
~1.32 and 1.40 MHz have been observed above Tc1, as is expected from the
crystalline structure. Rather complicated but characteristic variation of the
23Na-NMR spectra has been observed with varying T through the transition
temperatures, and the internal fields at two crystallographically distinct Na
sites are discussed on the basis of the magnetic structures reported
previously. The internal fields at two distinct Co sites observed below Tc1 and
the 591/T1-T curves of Na0.5CoO2 and K0.5CoO2 are also discussed in a
comparative way.Comment: 7 pages, 10 figures, submitted to J. Phys. Soc. Jpn, correction is
made in right colum of p6 (35th line) as K0.5CoO2-->Na0.5CoO
Yoshizawa's cross-helicity effect and its quenching
A central quantity in mean-field magnetohydrodynamics is the mean
electromotive force EMF, which in general depends on the mean magnetic field.
It may however have a part independent of the mean magnetic field. Here we
study an example of a rotating conducting body of turbulent fluid with non-zero
cross-helicity, in which a contribution to the EMF proportional to the angular
velocity occurs (Yoshizawa 1990). If the forcing is helical, it also leads to
an alpha effect, and large-scale magnetic fields can be generated. For not too
rapid rotation, the field configuration is such that Yoshizawa's contribution
to the EMF is considerably reduced compared to the case without alpha effect.
In that case, large-scale flows are also found to be generated.Comment: 10 pages, 8 figures, compatible with published versio
Electron-Phonon mechanism for Superconductivity in NaCoO: Valence-Band Suhl-Kondo effect Driven by Shear Phonons
To study the possible mechanism of superconductivity in NaCoO,
we examine the interaction between all the relevant optical phonons (breathing
and shear phonons) and -electrons of Co-ions, and study
the transition temperature for a s-wave superconductivity. The obtained is very low when the -valence-bands are far below the Fermi level.
However, is strongly enhanced when the top of the
-valence-bands is close to the Fermi level (say -50meV), thanks to
interband hopping of Cooper pairs caused by shear phonons. This ``valence-band
Suhl-Kondo mechanism'' due to shear phonons is significant to understand the
superconductivity in NaCoO. By the same mechanism, the kink
structure of the band-dispersion observed by ARPES, which indicates the strong
mass-enhancement () due to optical phonons, is also explained.Comment: 5 pages, 4 figures; v2:Added references, published in J. Phys. Soc.
Jp
- …