26 research outputs found

    The equation of state in lattice QCD: with physical quark masses towards the continuum limit

    Get PDF
    The equation of state of QCD at vanishing chemical potential as a function of temperature is determined for two sets of lattice spacings. Coarser lattices with temporal extension of N_t=4 and finer lattices of N_t=6 are used. Symanzik improved gauge and stout-link improved staggered fermionic actions are applied. The results are given for physical quark masses both for the light quarks and for the strange quark. Pressure, energy density, entropy density, quark number susceptibilities and the speed of sound are presented.Comment: 14 pages, 9 figures. Version published in JHEP: discussions added in Sects. 1, 2. Fig. 1 changed and a new figure for the interaction measure added. Information on statistics added in Table 1. Raw values of the pressure added in Table 3. A few references adde

    Four-dimensional Simulation of the Hot Electroweak Phase Transition with the SU(2) Gauge-Higgs Model

    Get PDF
    We study the finite-temperature phase transition of the four-dimensional SU(2) gauge-Higgs model for intermediate values of the Higgs boson mass in the range 50 \lsim m_H \lsim 100GeV on a lattice with the temporal lattice size Nt=2N_t=2. The order of the transition is systematically examined using finite size scaling methods. Behavior of the interface tension and the latent heat for an increasing Higgs boson mass is also investigated.Comment: Talk presented at LATTICE96(electroweak), 3 pages of LaTeX, 4 PostScript figure

    The Chromatin-Modifying Protein HMGA2 Promotes Atypical Teratoid/Rhabdoid Cell Tumorigenicity

    Get PDF
    Atypical teratoid/rhabdoid tumor (AT/RT) is an aggressive pediatric central nervous system tumor. The poor prognosis of AT/RT warrants identification of novel therapeutic targets and strategies. High mobility group A2 (HMGA2) is a developmentally important chromatin modifying protein that positively regulates tumor growth, self-renewal and invasion in other cancer types. HMGA2 was recently identified as being upregulated in AT/RT tissue, but the role of HMGA2 in brain tumors remains unknown. We used lentiviral short hairpin RNA to suppress HMGA2 in AT/RT cell lines and found that loss of HMGA2 led to decreased cell growth, proliferation, colony formation and increased apoptosis. We also found that suppression of HMGA2 negatively affected in vivo orthotopic xenograft tumor growth, more than doubling median survival of the mice from 58 days to 153 days. Our results indicate a role for HMGA2 in AT/RT in vitro and in vivo and demonstrate that HMGA2 is a potential therapeutic target in these lethal pediatric tumors

    RNA Editing Genes Associated with Extreme Old Age in Humans and with Lifespan in C. elegans

    Get PDF
    The strong familiality of living to extreme ages suggests that human longevity is genetically regulated. The majority of genes found thus far to be associated with longevity primarily function in lipoprotein metabolism and insulin/IGF-1 signaling. There are likely many more genetic modifiers of human longevity that remain to be discovered.Here, we first show that 18 single nucleotide polymorphisms (SNPs) in the RNA editing genes ADARB1 and ADARB2 are associated with extreme old age in a U.S. based study of centenarians, the New England Centenarian Study. We describe replications of these findings in three independently conducted centenarian studies with different genetic backgrounds (Italian, Ashkenazi Jewish and Japanese) that collectively support an association of ADARB1 and ADARB2 with longevity. Some SNPs in ADARB2 replicate consistently in the four populations and suggest a strong effect that is independent of the different genetic backgrounds and environments. To evaluate the functional association of these genes with lifespan, we demonstrate that inactivation of their orthologues adr-1 and adr-2 in C. elegans reduces median survival by 50%. We further demonstrate that inactivation of the argonaute gene, rde-1, a critical regulator of RNA interference, completely restores lifespan to normal levels in the context of adr-1 and adr-2 loss of function.Our results suggest that RNA editors may be an important regulator of aging in humans and that, when evaluated in C. elegans, this pathway may interact with the RNA interference machinery to regulate lifespan

    Effects of valproic acid on the cell cycle and apoptosis through acetylation of histone and tubulin in a scirrhous gastric cancer cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management of peritoneal dissemination is the most critical problem in gastric cancer. This study was performed to investigate the inhibitory effects of valproic acid (VPA) on a highly peritoneal-seeding cell line of human scirrhous gastric cancer, OCUM-2MD3, and to explore the mechanism and the potential of VPA.</p> <p>Methods</p> <p>The effects of VPA on the growth of OCUM-2MD3 cells were assessed by MTT assay. In addition, paclitaxel (PTX) was combined with VPA to evaluate their synergistic effects. HDAC1 and HDAC2 expression were evaluated by western blotting in OCUM-2MD3 cells and other gastric cancer cell lines (TMK-1, MKN-28). The acetylation status of histone H3 and α-tubulin after exposure to VPA were analyzed by western blotting. The activities of cell cycle regulatory proteins and apoptosis-modulating proteins were also examined by western blotting. The effects of VPA <it>in vivo </it>were evaluated in a xenograft model, and apoptotic activity was assessed by TUNEL assay.</p> <p>Results</p> <p>OCUM-2MD3 cells showed high levels of HDAC1 and HDAC2 expression compared with TMK-1 and MKN-28. The concentration of VPA required for significant inhibition of cell viability (<it>P </it>< 0.05) was 5 mM at 24 h and 0.5 mM at 48 h and 72 h. The inhibition of VPA with PTX showed dose-dependent and combinatorial effects. VPA increased acetyl-histone H3, acetyl-α-tubulin, and p21WAF1 levels accompanied by upregulation of p27, caspase 3, and caspase 9, and downregulation of bcl-2, cyclin D1, and survivin. In the xenograft model experiment, the mean tumor volume of the VPA-treated group was significantly reduced by 36.4%, compared with that of the control group at 4 weeks after treatment (<it>P </it>< 0.01). The apoptotic index was significantly higher in the VPA-treated group (42.3% ± 3.5%) than in the control group (7.7% ± 2.5%) (<it>P </it>< 0.001).</p> <p>Conclusions</p> <p>VPA induced dynamic modulation of histone H3 and α-tubulin acetylation in relation with the anticancer effect and the enhancement of PTX in the OCUM-2MD3 cell line. Therefore, VPA in combination with PTX is expected to be a promising therapy for peritoneal dissemination of scirrhous gastric cancer.</p

    Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target

    Get PDF
    Atypical teratoid rhabdoid tumor (AT/RT) is among the most fatal of all pediatric brain tumors. Aside from loss of function mutations in the SMARCB1 (BAF47/INI1/SNF5) chromatin remodeling gene, little is known of other molecular drivers of AT/RT. LIN28A and LIN28B are stem cell factors that regulate thousands of RNAs and are expressed in aggressive cancers. We identified high-levels of LIN28A and LIN28B in AT/RT primary tumors and cell lines, with corresponding low levels of the LIN28-regulated microRNAs of the let-7 family. Knockdown of LIN28A by lentiviral shRNA in the AT/RT cell lines CHLA-06-ATRT and BT37 inhibited growth, cell proliferation and colony formation and induced apoptosis. Suppression of LIN28A in orthotopic xenograft models led to a more than doubling of median survival compared to empty vector controls (48 vs 115 days). LIN28A knockdown led to increased expression of let-7b and let-7g microRNAs and a down-regulation of KRAS mRNA. AT/RT primary tumors expressed increased mitogen activated protein (MAP) kinase pathway activity, and the MEK inhibitor selumetinib (AZD6244) decreased AT/RT growth and increased apoptosis. These data implicate LIN28/RAS/MAP kinase as key drivers of AT/RT tumorigenesis and indicate that targeting this pathway may be a therapeutic option in this aggressive pediatric malignancy
    corecore