848 research outputs found

    Motion Tomography of a single trapped ion

    Full text link
    A method for the experimental reconstruction of the quantum state of motion for a single trapped ion is proposed. It is based on the measurement of the ground state population of the trap after a sudden change of the trapping potential. In particular, we show how the Q function and the quadrature distribution can be measured directly. In an example we demonstrate the principle and analyze the sensibility of the reconstruction process to experimental uncertainties as well as to finite grid limitations. Our method is not restricted to the Lamb-Dicke Limit and works in one or more dimensions.Comment: 4 pages, Revtex format, 4 postscript figures, changed typographical error

    Formation of Pairing Fields in Resonantly Coupled Atomic and Molecular Bose-Einstein Condensates

    Full text link
    In this paper, we show that pair-correlations may play an important role in the quantum statistical properties of a Bose-Einstein condensed gas composed of an atomic field resonantly coupled with a corresponding field of molecular dimers. Specifically, pair-correlations in this system can dramatically modify the coherent and incoherent transfer between the atomic and molecular fields.Comment: 4 pages, 4 figure

    On the validity of Stokes’ law at the molecular level

    Get PDF
    In order to investigate the dependence of the viscosity on the mass of the molecules in a liquid, and thus check the validity of Stokes' law for molecules, several molecular dynamics simulations of 'water' molecules with different mass and different molecular mass distributions were performed. The viscosity is shown to be sensitive to the mass but less sensitive to the mass distribution. The product of diffusion coefficient and viscosity, which according to Stokes' law should be independent of the mass, varies. We may therefore conclude that Stokes' law is not valid for small molecules. (C) 1999 Elsevier Science B.V. All rights reserved

    Coincidence of Small-scale Spatial Discontinuities in Leaf Morphology and Nuclear Microsatellite Variation of Quercus petraea and Q. robur in a Mixed Forest

    Get PDF
    Background and Aims The taxon complex comprising Quercus petraea and Q. robur shows distinct morphologies and ecological preferences, but mostly low differentiation in various types of molecular markers at a broad spatial range. Local, spatially explicit analyses may reveal patterns induced by microevolutionary processes operating mainly over short distances. However, no attempts have been made to date to explore the potential of spatial analyses combining morphological and genetic data of these oaks. Methods A mixed oak stand was studied to elucidate the small-scale population genetic structure. All adult individuals were classified and putative hybrids were identified using multivariate discrimination analysis of leaf morphological characters. Likewise, all trees were genotyped with five nuclear microsatellites, and a Bayesian assignment method was applied based on maximum likelihood of multilocus genotypes for taxon and putative hybrid classification. Key Results Multivariate analyses of leaf morphological data recognized two groups with few individuals as putative hybrids. These groups were significantly differentiated at the five microsatellites, and genetic taxon assignment coincided well with morphological classification. Furthermore, most putative hybrids were assigned to the taxon found in their spatial neighbourhood. When grouping trees into clusters according to their spatial positions, these clusters were clearly dominated by one taxon. Discontinuities in morphological and genetic distance matrices among these clusters showed high congruence. Conclusions The spatial-genetic analyses and the available literature led to the assumption that reproductive barriers, assortative mating, limited seed dispersal and microsite-induced selection in favour of the locally adapted taxon at the juvenile stage may reinforce taxon-specific spatial aggregation that fosters species separation. Thus, the results tend to support the hypothesis that Q. petraea and Q. robur are distinct taxa which share a recent common ancestry. Occasional hybrids are rarely found in adults owing to selection during establishment of juvenile

    Kinetic theory and dynamic structure factor of a condensate in the random phase approximation

    Full text link
    We present the microscopic kinetic theory of a homogeneous dilute Bose condensed gas in the generalized random phase approximation (GRPA), which satisfies the following requirements: 1) the mass, momentum and energy conservation laws; 2) the H-theorem; 3) the superfluidity property and 4) the recovery of the Bogoliubov theory at zero temperature \cite{condenson}. In this approach, the condensate influences the binary collisional process between the two normal atoms, in the sense that their interaction force results from the mediation of a Bogoliubov collective excitation traveling throughout the condensate. Furthermore, as long as the Bose gas is stable, no collision happens between condensed and normal atoms. In this paper, we show how the kinetic theory in the GRPA allows to calculate the dynamic structure factor at finite temperature and when the normal and superfluid are in a relative motion. The obtained spectrum for this factor provides a prediction which, compared to the experimental results, allows to validate the GRPA. PACS numbers:03.75.Hh, 03.75.Kk, 05.30.-dComment: 6 pages, 1 figures, QFS2004 conferenc

    Submillimeter wavelength survey of the galactic plane from l = -5 deg to l = +62 deg: Structure and energetics of the inner disk

    Get PDF
    Results from a large scale survey of the first quadrant of the Milky Way galactic plane at wavelengths of 150, 250, and 300 microns with a 10x10 arcmin beam are presented. The emission detected in the survey arises from compact sources, most of which are identified with known peaks of 5 GHz and/or CO emission, and from an underlying diffuse background with a typical angular width of approximately 0.9 deg (FWHM) which accounts for most of the emission. A total of 80 prominent discrete sources were identified and characterized, of which about half were not previously reported at far infrared wavelengths. The total infrared luminosity within the solar circle is approximately 1 to 2x10 to the 10th power L sub 0, and is probably emitted by dust that resides in molecular clouds

    The effect of force-field parameters on properties of liquids:Parametrization of a simple three-site model for methanol

    Get PDF
    A simple rigid three-site model for methanol compatible with the simple point charge (SPC) water and the GROMOS96 force field is parametrized and tested. The influence of different force-field parameters, such as the methanol geometry and the charge distribution on several properties calculated by molecular dynamics is investigated. In particular an attempt was made to obtain good agreement with experimental data for the static dielectric constant and the mixing enthalpy with water. The model is compared to other methanol models from the literature in terms of the ability to reproduce a range of experimental properties.<br/

    Noise spectroscopy of optical microcavity

    Full text link
    The intensity noise spectrum of the light passed through an optical microcavity is calculated with allowance for thermal fluctuations of its thickness. The spectrum thus obtained reveals a peak at the frequency of acoustic mode localized inside the microcavity and depends on the size of the illuminated area. The estimates of the noise magnitude show that it can be detected using the up-to-date noise spectroscopy technique.Comment: 10 pages, 1 figur
    • …
    corecore