1,789 research outputs found

    Rapid and efficient generation of antigen-specific isogenic T cells from cryopreserved blood samples

    Get PDF
    Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene editing has been leveraged for the modification of human and mouse T cells. However, limited experience is available on the application of CRISPR/Cas9 electroporation in cryopreserved T cells collected during clinical trials. To address this, we aimed to optimize a CRISPR/Cas9-mediated gene editing protocol compatible with peripheral blood mononuclear cells (PBMCs) samples routinely produced during clinical trials. PBMCs from healthy donors were used to generate knockout T-cell models for interferon-gamma, Cbl proto-oncogene B (CBLB), Fas cell surface death receptor (Fas) and T-cell receptor (TCR alpha beta) genes. The effect of CRISPR/Cas9-mediated gene editing on T cells was evaluated using apoptosis assays, cytokine bead arrays and ex vivo and in vitro stimulation assays. Our results demonstrate that CRISPR/Cas9-mediated gene editing of ex vivo T cells is efficient and does not overtly affect T-cell viability. Cytokine release and T-cell proliferation were not affected in gene-edited T cells. Interestingly, memory T cells were more susceptible to CRISPR/Cas9 gene editing than naive T cells. Ex vivo and in vitro stimulation with antigens resulted in equivalent antigen-specific T-cell responses in gene-edited and untouched control cells, making CRISPR/Cas9-mediated gene editing compatible with clinical antigen-specific T-cell activation and expansion assays. Here, we report an optimized protocol for rapid, viable and highly efficient genetic modification in ex vivo human antigen-specific T cells, for subsequent functional evaluation and/or expansion. Our platform extends CRISPR/Cas9-mediated gene editing for use in gold-standard clinically used immune-monitoring pipelines and serves as a starting point for development of analogous approaches, such as those including transcriptional activators and/or epigenetic modifiers

    Measuring expectations of inflation: Effects of survey mode, wording, and opportunities to revise

    Get PDF
    Several national surveys aim to elicit consumers’ inflation expectations. Median expectations tend to track objective inflation estimates over time, although responses display large dispersion. Medians also tend to differ between surveys, possibly reflecting survey design differences. Using a nationally representative Dutch sample, we evaluate the importance of three survey design features in explaining observed differences: mode (face-to-face vs. web), question wording (‘prices in general’ vs. ‘inflation’), and the explicit opportunity to revise responses. We examine effects on item non-responses, revisions, reported inflation expectations and their deviation from the CPI inflation rate. We discuss implications of our findings for survey design

    Plasma activation of N-2, CH4 and CO2: an assessment of the vibrational non-equilibrium time window

    Get PDF
    Vibrational excitation potentially enhances the energy efficiency of plasma dissociation of stable molecules and may open new routes for energy storage and process electrification. Electron, vibrational and rotational temperatures were measured by in situ Thomson and Raman scattering in order to assess the opportunities and limitations of the essential vibration-translation non-equilibria in N-2, CO2 and CH4 plasma. Electron temperatures of 1.1-2.8 eV were measured in N-2 and CH4. These are used to confirm predominant energy transfer to vibrations after an initial phase of significant electronic excitation and ionization. The vibrational temperatures initially exceed rotational temperatures by almost 8000 K in N-2, by 900 K in CO2, and by 300 K in CH4. Equilibration is observed at the 0.1 ms timescale. Based on the vibrational temperatures, the vibrational loss rates for different channels are estimated. In N-2, vibrational quenching via N atoms is identified as the dominant equilibration mechanism. Atomic nitrogen population reaches a mole fraction of more than 1%, as inferred from the afterglow emission decay, and explains a gas heating rate of 25 K mu s(-1). CH4 equilibration at 1200 K is predominantly caused by vibrational-translational relaxation in CH4-CH4 collisions. As for CO2, vibrational-translational relaxation via parent molecules is responsible for a large fraction of the observed heating, whereas product-mediated VT relaxation is not significantly contributing. It is suggested that electronic excitation, followed by dissociation or quenching contributes to the remaining heat generation. In conclusion, the time window to profit from vibrational excitation under the present conditions is limiting practical application.</p

    Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation: a study in patients with (pre)malignant lesions of the oesophagus.

    Get PDF
    Administration of 5-aminolaevulinic acid (ALA) leads to porphyrin accumulation in malignant and premalignant tissues, and ALA is used as a prodrug in photodynamic therapy (PDT). To understand the mechanism of porphyrin accumulation after the administration of ALA and to investigate whether ALA-induced protoporphyrin IX might be a suitable photosensitizer in Barrett's oesophagus and adenocarcinoma, we determined the activities of porphobilinogen deaminase (PBG-D) and ferrochelatase (FC) in various malignant and premalignant as well as in normal tissues of the human oesophagus. A PDT power index for ALA-induced porphyrin accumulation, the ratio of PBG-D to FC normalized for the normal squamous epithelium of the oesophagus, was calculated to evaluate intertissue variation in the ability to accumulate porphyrins. In malignant and premalignant tissue a twofold increased PBG-D activity and a marginally increased FC activity was seen compared with normal squamous epithelium. A significantly increased PDT power index in Barrett's epithelium and adenocarcinoma was found. Our results suggest that, after the administration of ALA, porphyrins will accumulate in a greater amount in Barrett's epithelium and adenocarcinoma of the oesophagus because of an imbalance between PBG-D and FC activities. The PDT power index here defined might be a useful indicative parameter for predicting the susceptibility of these tissues to ALA-PDT

    Porphyrin biosynthesis in human Barrett's oesophagus and adenocarcinoma after ingestion of 5-aminolaevulinic acid

    Get PDF
    5-Aminolaevulinic acid (ALA)-induced porphyrin biosynthesis, which is used for ALA-based photodynamic therapy (ALA-PDT), was studied in tissues of 10 patients with Barrett’s oesophagus (BE) and adenocarcinoma of the oesophagus (AC) undergoing oesophagectomy at a mean time interval of 6.7 h after the ingestion of ALA (60 mg kg–1). In BE, AC, squamous epithelium (SQ) and gastric cardia, the activities of the haem biosynthetic enzymes porphobilinogen deaminase (PBG-D) and ferrochelatase (FC) and the PDT power index – the ratio between PBG-D and FC in BE and AC in comparison with SQ – were determined before ALA ingestion. Following ALA administration, ALA, porphobilinogen, uroporphyrin I and PPIX were determined in tissues and plasma. The PDT power index did not predict the level of intracellular accumulation of PPIX found at 6.7 h. In BE, there was no selectivity of PPIX accumulation compared to SQ, whereas in half of patients with AC selectivity was found. Higher haem biosynthetic enzyme activities (i.e. PBG-D) and lower PPIX precursor concentrations were found in BE and AC compared to SQ. It is therefore possible that PPIX levels will peak at earlier time intervals in BE and AC compared to SQ. © 2000 Cancer Research Campaig
    • …
    corecore