211 research outputs found

    Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac--Moody Lie algebras

    Full text link
    This is a continuation of our "Lecture on Kac--Moody Lie algebras of the arithmetic type" \cite{25}. We consider hyperbolic (i.e. signature (n,1)(n,1)) integral symmetric bilinear form S:M×MZS:M\times M \to {\Bbb Z} (i.e. hyperbolic lattice), reflection group WW(S)W\subset W(S), fundamental polyhedron \Cal M of WW and an acceptable (corresponding to twisting coefficients) set P({\Cal M})\subset M of vectors orthogonal to faces of \Cal M (simple roots). One can construct the corresponding Lorentzian Kac--Moody Lie algebra {\goth g}={\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) which is graded by MM. We show that \goth g has good behavior of imaginary roots, its denominator formula is defined in a natural domain and has good automorphic properties if and only if \goth g has so called {\it restricted arithmetic type}. We show that every finitely generated (i.e. P({\Cal M}) is finite) algebra {\goth g}^{\prime\prime}(A(S,W_1,P({\Cal M}_1))) may be embedded to {\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) of the restricted arithmetic type. Thus, Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type is a natural class to study. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type have the best automorphic properties for the denominator function if they have {\it a lattice Weyl vector ρ\rho}. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type with generalized lattice Weyl vector ρ\rho are called {\it elliptic}Comment: Some corrections in Sects. 2.1, 2.2 were done. They don't reflect on results and ideas. 31 pages, no figures. AMSTe

    Classification of double flag varieties of complexity 0 and 1

    Full text link
    A classification of double flag varieties of complexity 0 and 1 is obtained. An application of this problem to decomposing tensor products of irreducible representations of semisimple Lie groups is considered

    Hypermatrix factors for string and membrane junctions

    Full text link
    The adjoint representations of the Lie algebras of the classical groups SU(n), SO(n), and Sp(n) are, respectively, tensor, antisymmetric, and symmetric products of two vector spaces, and hence are matrix representations. We consider the analogous products of three vector spaces and study when they appear as summands in Lie algebra decompositions. The Z3-grading of the exceptional Lie algebras provide such summands and provides representations of classical groups on hypermatrices. The main natural application is a formal study of three-junctions of strings and membranes. Generalizations are also considered.Comment: 25 pages, 4 figures, presentation improved, minor correction

    Mechatronic design of a fast and long range 4 degrees of freedom humanoid neck

    Get PDF
    This paper describes the mechatronic design of a humanoid neck. To research human machine interaction, the head and neck combination should be able to approach the human behavior as much as possible. We present a novel humanoid neck concept that is both fast, and has a long range of motion in 4 degrees of freedom (DOFs). This enables the head to track fast objects, and the neck design is suitable for mimicking expressions. The humanoid neck features a differential drive design for the lower 2 DOFs resulting in a low moving mass and the ability to use strong actuators. The performance of the neck has been\ud optimized by minimizing backlash in the mechanisms, and by using gravity compensation. Two cameras in the head are used for scanning and interaction with the environment

    Global analysis by hidden symmetry

    Full text link
    Hidden symmetry of a G'-space X is defined by an extension of the G'-action on X to that of a group G containing G' as a subgroup. In this setting, we study the relationship between the three objects: (A) global analysis on X by using representations of G (hidden symmetry); (B) global analysis on X by using representations of G'; (C) branching laws of representations of G when restricted to the subgroup G'. We explain a trick which transfers results for finite-dimensional representations in the compact setting to those for infinite-dimensional representations in the noncompact setting when XCX_C is GCG_C-spherical. Applications to branching problems of unitary representations, and to spectral analysis on pseudo-Riemannian locally symmetric spaces are also discussed.Comment: Special volume in honor of Roger Howe on the occasion of his 70th birthda

    Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits

    Full text link
    We give a criterion for a Dynkin diagram, equivalently a generalized Cartan matrix, to be symmetrizable. This criterion is easily checked on the Dynkin diagram. We obtain a simple proof that the maximal rank of a Dynkin diagram of compact hyperbolic type is 5, while the maximal rank of a symmetrizable Dynkin diagram of compact hyperbolic type is 4. Building on earlier classification results of Kac, Kobayashi-Morita, Li and Sa\c{c}lio\~{g}lu, we present the 238 hyperbolic Dynkin diagrams in ranks 3-10, 142 of which are symmetrizable. For each symmetrizable hyperbolic generalized Cartan matrix, we give a symmetrization and hence the distinct lengths of real roots in the corresponding root system. For each such hyperbolic root system we determine the disjoint orbits of the action of the Weyl group on real roots. It follows that the maximal number of disjoint Weyl group orbits on real roots in a hyperbolic root system is 4.Comment: J. Phys. A: Math. Theor (to appear

    Moduli of Abelian varieties, Vinberg theta-groups, and free resolutions

    Full text link
    We present a systematic approach to studying the geometric aspects of Vinberg theta-representations. The main idea is to use the Borel-Weil construction for representations of reductive groups as sections of homogeneous bundles on homogeneous spaces, and then to study degeneracy loci of these vector bundles. Our main technical tool is to use free resolutions as an "enhanced" version of degeneracy loci formulas. We illustrate our approach on several examples and show how they are connected to moduli spaces of Abelian varieties. To make the article accessible to both algebraists and geometers, we also include background material on free resolutions and representation theory.Comment: 41 pages, uses tabmac.sty, Dedicated to David Eisenbud on the occasion of his 65th birthday; v2: fixed some typos and added reference

    Reduction and reconstruction of stochastic differential equations via symmetries

    Full text link
    An algorithmic method to exploit a general class of infinitesimal symmetries for reducing stochastic differential equations is presented and a natural definition of reconstruction, inspired by the classical reconstruction by quadratures, is proposed. As a side result the well-known solution formula for linear one-dimensional stochastic differential equations is obtained within this symmetry approach. The complete procedure is applied to several examples with both theoretical and applied relevance

    Harmonic analysis on spherical homogeneous spaces with solvable stabilizer

    Full text link
    For all spherical homogeneous spaces G/H, where G is a simply connected semisimple algebraic group and H a connected solvable subgroup of G, we compute the spectra of the representations of G on spaces of regular sections of homogeneous line bundles over G/H.Comment: v2: 14 pages, minor correction

    Limits of Gaudin algebras, quantization of bending flows, Jucys--Murphy elements and Gelfand--Tsetlin bases

    Full text link
    Gaudin algebras form a family of maximal commutative subalgebras in the tensor product of nn copies of the universal enveloping algebra U(\g) of a semisimple Lie algebra \g. This family is parameterized by collections of pairwise distinct complex numbers z1,...,znz_1,...,z_n. We obtain some new commutative subalgebras in U(\g)^{\otimes n} as limit cases of Gaudin subalgebras. These commutative subalgebras turn to be related to the hamiltonians of bending flows and to the Gelfand--Tsetlin bases. We use this to prove the simplicity of spectrum in the Gaudin model for some new cases.Comment: 11 pages, references adde
    corecore