1,525 research outputs found

    Free Meson Spectral Functions on the Lattice

    Full text link
    We present results from an analytic calculation of thermal meson spectral functions in the infinite temperature (free field) limit. We compare spectral functions for various lattice fermion formulations used at present in studies of in-medium properties of hadrons based on the maximum entropy method (MEM). In particular, we will present a new calculation of spectral functions performed with extended quark sources.Comment: 3 pages, Lattice2003(nonzero

    Charmonium at finite temperature

    Full text link
    We study charmoinum correlators and spectral functions at finite temperature within the quenched approximation using isotropic lattices with lattice spacing a^-1=4.86 GeV and 9.72 GeV. Although we observe some medium modifications of the ground state charmonium spectral function above deconfinement, we find that ground state charmonia (J/psi and eta_c) exist in the deconfined phase at least up to temperatures as high as 1.5Tc. P-wave charmonia (chi_c) on the other hand are dissociated already at 1.12Tc.Comment: Contribution to Lattice 2003 (non-zero) LaTeX, 3 pages, 3 figures, uses espcrc2 styl

    Numerical study of O(a) improved Wilson quark action on anisotropic lattice

    Get PDF
    The O(a)O(a) improved Wilson quark action on the anisotropic lattice is investigated. We carry out numerical simulations in the quenched approximation at three values of lattice spacing (aσ−1=1a_{\sigma}^{-1}=1--2 GeV) with the anisotropy Ο=aσ/aτ=4\xi=a_{\sigma}/a_{\tau}=4, where aσa_{\sigma} and aτa_{\tau} are the spatial and the temporal lattice spacings, respectively. The bare anisotropy ÎłF\gamma_F in the quark field action is numerically tuned by the dispersion relation of mesons so that the renormalized fermionic anisotropy coincides with that of gauge field. This calibration of bare anisotropy is performed to the level of 1 % statistical accuracy in the quark mass region below the charm quark mass. The systematic uncertainty in the calibration is estimated by comparing the results from different types of dispersion relations, which results in 3 % on our coarsest lattice and tends to vanish in the continuum limit. In the chiral limit, there is an additional systematic uncertainty of 1 % from the chiral extrapolation. Taking the central value ÎłF=ÎłF∗\gamma_F=\gamma_F^* from the result of the calibration, we compute the light hadron spectrum. Our hadron spectrum is consistent with the result by UKQCD Collaboration on the isotropic lattice. We also study the response of the hadron spectrum to the change of anisotropic parameter, ÎłF→γF∗+ÎŽÎłF\gamma_F \to \gamma_F^* + \delta\gamma_F. We find that the change of ÎłF\gamma_F by 2 % induces a change of 1 % in the spectrum for physical quark masses. Thus the systematic uncertainty on the anisotropic lattice, as well as the statistical one, is under control.Comment: 27 pages, 25 eps figures, LaTe

    An Intermediate-band imaging survey for high-redshift Lyman Alpha Emitters: The Mahoroba-11

    Full text link
    We present results of our intermediate-band optical imaging survey for high-zz Lyα\alpha emitters (LAEs) using the prime focus camera, Suprime-Cam, on the 8.2m Subaru Telescope. In our survey, we use eleven filters; four broad-band filters (BB, RcR_{\rm c}, iâ€Či^\prime, and zâ€Čz^\prime) and seven intermediate-band filters covering from 500 nm to 720 nm; we call this imaging program as the Mahoroba-11. The seven intermediate-band filters are selected from the IA filter series that is the Suprime-Cam intermediate-band filter system whose spectral resolution is R=23R = 23. Our survey has been made in a 34â€Č×27â€Č34^\prime \times 27^\prime sky area in the Subaru XMM Newton Deep Survey field. We have found 409 IA-excess objects that provide us a large photometric sample of strong emission-line objects. Applying the photometric redshift method to this sample, we obtained a new sample of 198 LAE candidates at 3<z<53 < z < 5. We found that there is no evidence for evolution of the number density and the star formation rate density for LAEs with log⁥L(Lyα)(ergs−1)>42.67\log L({\rm Ly}\alpha) ({\rm erg s^{-1}}) > 42.67 between z∌3z \sim 3 and 5.Comment: 46 pages, 15 figures, PASJ, Vol.57, No.6, in pres

    Scaling Limits for the System of Semi-Relativistic Particles Coupled to a Scalar Bose Field

    Full text link
    In this paper the Hamiltonian for the system of semi-relativistic particles interacting with a scalar bose field is investigated. A scaled total Hamiltonian of the system is defined and its scaling limit is considered. Then the semi-relativistic Schrodinger operator with an effective potential is derived

    First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star

    Full text link
    It has been proposed theoretically that the first generation of stars in the Universe (population III) would be as massive as 100 solar masses (100Mo), because of inefficient cooling of the precursor gas clouds. Recently, the most iron-deficient (but still carbon-rich) low-mass star -- HE0107-5240 -- was discovered. If this is a population III that gained its metals (elements heavier than helium) after its formation, it would challenge the theoretical picture of the formation of the first stars. Here we report that the patterns of elemental abundance in HE0107-5240 (and other extremely metal-poor stars) are in good accord with the nucleosynthesis that occurs in stars with masses of 20-130Mo when they become supernovae if, during the explosions, the ejecta undergo substantial mixing and fall-back to form massive black holes. Such supernovae have been observed. The abundance patterns are not, however, consistent with enrichment by supernovae from stars in the range 130-300 Mo. We accordingly infer that the first-generation supernovae came mostly from explosions of ~ 20-130Mo stars; some of these produced iron-poor but carbon- and oxygen-rich ejecta. Low-mass second-generation stars, like HE0107-5240, could form because the carbon and oxygen provided pathways for gas to cool.Comment: To appear in NATURE 422 (2003), 871-873 (issue 24 April 2003); Title and the first paragraph have been changed and other minor corrections have been mad
    • 

    corecore