627 research outputs found

    Splitting of macroscopic fundamental strings in flat space and holographic hadron decays

    Full text link
    In this review article we present the calculation of the splitting rate in flat space of a macroscopic fundamental string either intersecting at a generic angle a Dp-brane or lying on it. The result is then applied, in the context of the string/gauge theory correspondence, to the study of exclusive decay rates of large spin mesons into mesons. As examples, we discuss the cases of N=4 SYM with a small number of flavors, and of QCD-like theories in the quenched approximation. In the latter context, explicit analytic formulas are given for decay rates of mesons formed either by heavy quarks or by massless quarks.Comment: 17 pages, 3 figures. Invited review for Modern Physics Letters

    Redefining B-twisted topological sigma models

    Full text link
    A recently proposed variation on the usual procedure to perform the topological B-twist in rigid N=2N=2 models is applied to the case of the σ\sigma model on a K\"ahler manifold. This leads to an alternative description of Witten's topological σ\sigma model, which allows for a proper BRST interpretation and ghost number assignement. We also show that the auxiliary fields, which are responsible for the off shell closure of the N=2N=2 algebra, play an important role in our construction.Comment: one reference adde

    Hiding Anomalies

    Get PDF
    Anomalies can be anticipated at the classical level without changing the classical cohomology, by introducing extra degrees of freedom. In the process, the anomaly does not quite disappear. We show that, in fact, it is shifted to new symmetries that come with the extra fields.Comment: 10

    The BRST-antibracket cohomology of 2d gravity

    Get PDF
    We compute completely the BRST--antibracket cohomology on local functionals in two-dimensional Weyl invariant gravity for given classical field content (two dimensional metric and scalar matter fields) and gauge symmetries (two dimensional diffeomorphisms and local Weyl transformations). This covers the determination of all classical actions, of all their rigid symmetries, of all background charges and of all candidate gauge anomalies. In particular we show that the antifield dependence can be entirely removed from the anomalies and that, if the target space has isometries, the condition for the absence of matter field dependent anomalies is more general than the familiar `dilaton equations'

    The regularized BRST Jacobian of pure Yang-Mills theory

    Full text link
    The Jacobian for infinitesimal BRST transformations of path integrals for pure Yang-Mills theory, viewed as a matrix \unity +\Delta J in the space of Yang-Mills fields and (anti)ghosts, contains off-diagonal terms. Naively, the trace of ΔJ\Delta J vanishes, being proportional to the trace of the structure constants. However, the consistent regulator \cR, constructed from a general method, also contains off-diagonal terms. An explicit computation demonstrates that the regularized Jacobian Tr\ \Delta J\exp -\cR /M^2 for M2M^2\rightarrow \infty is the variation of a local counterterm, which we give. This is a direct proof at the level of path integrals that there is no BRST anomaly.Comment: 12 pages, latex, CERN-TH.6541/92, KUL-TF-92/2

    Batalin-Vilkovisky gauge-fixing of a chiral two-form in six dimensions

    Get PDF
    We perform the gauge-fixing of the theory of a chiral two-form boson in six dimensions starting from the action given by Pasti, Sorokin and Tonin. We use the Batalin-Vilkovisky formalism, introducing antifields and writing down an extended action satisfying the classical master equation. Then we gauge-fix the three local symmetries of the extended action in two different ways.Comment: 15 pages, latex, no figures, version accepted by Class. Quant. Gra
    corecore