3,518 research outputs found
Dark Matter and IMF normalization in Virgo dwarf early-type galaxies
In this work we analyze the dark matter (DM) fraction, , and
mass-to-light ratio mismatch parameter, (computed with respect
to a Milky-Way-like IMF), for a sample of 39 dwarf early-type galaxies (dEs) in
the Virgo cluster. Both and are estimated within the
central (one effective radius) galaxy regions, with a Jeans dynamical analysis
that relies on galaxy velocity dispersions, structural parameters, and stellar
M/L ratios from the SMAKCED survey. In this first attempt to constrain,
simultaneously, the IMF normalization and the DM content, we explore the impact
of different assumptions on the DM model profile. On average, for a NFW
profile, the is consistent with a Chabrier-like normalization
(), with . One of the main results of
the present work is that for at least a few systems the is
heavier than the MW-like value (i.e. either top- or bottom-heavy). When
introducing tangential anisotropy, larger and smaller
are derived. Adopting a steeper concentration-mass relation than that from
simulations, we find lower () and larger . A
constant M/L profile with null gives the heaviest
(). In the MONDian framework, we find consistent results to those for
our reference NFW model. If confirmed, the large scatter of for
dEs would provide (further) evidence for a non-universal IMF in early-type
systems. On average, our reference estimates are consistent with those
found for low- () early-type
galaxies (ETGs). Furthermore, we find consistent with values from the
SMAKCED survey, and find a double-value behavior of with stellar mass,
which mirrors the trend of dynamical M/L and global star formation efficiency
with mass.Comment: 11 pages, 3 figures, 1 table, published on MNRAS. Figure 1 has been
updated with respect to version 1, including the range of values found if the
S\'ersic index, n, is varied from 0.5 to 2 (dark-green curves
Energy rating of a water pumping station using multivariate analysis
Among water management policies, the preservation and the saving of energy demand in water supply and treatment systems play key roles. When focusing on energy, the customary metric to determine the performance of water supply systems is linked to the definition of component-based energy indicators. This approach is unfit to account for interactions occurring among system elements or between the system and its environment. On the other hand, the development of information technology has led to the availability of increasing large amount of data, typically gathered from distributed sensor networks in so-called smart grids. In this context, data intensive methodologies address the possibility of using complex network modeling approaches, and advocate the issues related to the interpretation and analysis of large amount of data produced by smart sensor networks.
In this perspective, the present work aims to use data intensive techniques in the energy analysis of a water management network.
The purpose is to provide new metrics for the energy rating of the system and to be able to provide insights into the dynamics of its operations. The study applies neural network as a tool to predict energy demand, when using flowrate and vibration data as predictor variables
Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models
We analyze the evolution of colour gradients predicted by the hydrodynamical
models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce
fairly well the chemical abundance pattern and the metallicity gradients of
local ETGs. We convert the star formation (SF) and metal content into colours
by means of stellar population synthetic model and investigate the role of
different physical ingredients, as the initial gas distribution and content,
and eps_SF, i.e. the normalization of SF rate. From the comparison with high
redshift data, a full agreement with optical rest-frame observations at z < 1
is found, for models with low eps_SF, whereas some discrepancies emerge at 1 <
z < 2, despite our models reproduce quite well the data scatter at these
redshifts. To reconcile the prediction of these high eps_SF systems with the
shallower colour gradients observed at lower z we suggest intervention of 1-2
dry mergers. We suggest that future studies should explore the impact of wet
galaxy mergings, interactions with environment, dust content and a variation of
the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA
MOND and IMF variations in early-type galaxies from ATLAS3D
MOdified Newtonian dynamics (MOND) represents a phenomenological alternative
to dark matter (DM) for the missing mass problem in galaxies and clusters of
galaxies. We analyze the central regions of a local sample of
early-type galaxies from the survey, to see if the data can be
reproduced without recourse to DM. We estimate dynamical masses in the MOND
context through Jeans analysis, and compare to stellar masses
from stellar population synthesis. We find that the observed stellar
mass--velocity dispersion relation is steeper than expected assuming MOND with
a fixed stellar initial mass function (IMF) and a standard value for the
acceleration parameter . Turning from the space of observables to
model space, a) fixing the IMF, a universal value for cannot be
fitted, while, b) fixing and leaving the IMF free to vary, we find
that it is "lighter" (Chabrier-like) for low-dispersion galaxies, and "heavier"
(Salpeter-like) for high dispersions. This MOND-based trend matches inferences
from Newtonian dynamics with DM, and from detailed analysis of spectral
absorption lines, adding to the converging lines of evidence for a
systematically-varying IMF.Comment: 6 pages, 3 figures, accepted for publication on MNRAS Letters, typos
corrected and further references adde
Galaxy evolution within the Kilo-Degree Survey
The ESO Public Kilo-Degree Survey (KiDS) is an optical wide-field imaging
survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS
will scan 1500 square degrees in four optical filters (u, g, r, i). Designed to
be a weak lensing survey, it is ideal for galaxy evolution studies, thanks to
the high spatial resolution of VST, the good seeing and the photometric depth.
The surface photometry have provided with structural parameters (e.g. size and
S\'ersic index), aperture and total magnitudes have been used to derive
photometric redshifts from Machine learning methods and stellar
masses/luminositites from stellar population synthesis. Our project aimed at
investigating the evolution of the colour and structural properties of galaxies
with mass and environment up to redshift and more, to put
constraints on galaxy evolution processes, as galaxy mergers.Comment: 4 pages, 2 figures, to appear on the refereed Proceeding of the "The
Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on
25th-28th november 2014, to be published on Astrophysics and Space Science
Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic
Dark matter scaling relations in intermediate z haloes
We investigate scaling relations between the dark matter (DM) halo model parameters for a sample of intermediate-redshift early-type galaxies (ETGs) resorting to a combined analysis of Einstein radii and aperture velocity dispersions. Modelling the dark halo with a Navarro-Frenk-White profile and assuming a Salpeter initial mass function (IMF) to estimate stellar masses, we find that the column density and the Newtonian acceleration within the halo characteristic radius rs and effective radius Reff are not universal quantities, but correlate with the luminosity LV, the stellar mass M★ and the halo mass M200, contrary to recent claims in the literature. We finally discuss a tight correlation among the DM mass MDM(Reff) within the effective radius Reff, the stellar mass M★(Reff) and Reff itself. The slopes of the scaling relations discussed here strongly depend, however, on the DM halo model and the IMF adopted so that these ingredients have to be better constrained in order to draw definitive conclusions on the DM scaling relations for ETG
Systematic variation of central mass density slope in early-type galaxies
We study the total density distribution in the central regions (
effective radius, ) of early-type galaxies (ETGs), using data from
the SPIDER survey. We model each galaxy with two components (dark matter halo +
stars), exploring different assumptions for the dark matter (DM) halo profile,
and leaving stellar mass-to-light () ratios as free fitting
parameters to the data. For a Navarro et al. (1996) profile, the slope of the
total mass profile is non-universal. For the most massive and largest ETGs, the
profile is isothermal in the central regions (), while for
the low-mass and smallest systems, the profile is steeper than isothermal, with
slopes similar to those for a constant-M/L profile. For a concentration-mass
relation steeper than that expected from simulations, the correlation of
density slope with mass tends to flatten. Our results clearly point to a
"non-homology" in the total mass distribution of ETGs, which simulations of
galaxy formation suggest may be related to a varying role of dissipation with
galaxy mass.Comment: 3 pages, 1 figure, to appear on the refereed Proceeding of the "The
Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on
25th-28th november 2014, to be published on Astrophysics and Space Science
Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic
Colour and stellar population gradients in galaxies
We discuss the colour, age and metallicity gradients in a wide sample of
local SDSS early- and late-type galaxies. From the fitting of stellar
population models we find that metallicity is the main driver of colour
gradients and the age in the central regions is a dominant parameter which
rules the scatter in both metallicity and age gradients. We find a consistency
with independent observations and a set of simulations. From the comparison
with simulations and theoretical considerations we are able to depict a general
picture of a formation scenario.Comment: 4 pages, 4 figures. Proceedings of 54th Congresso Nazionale della
SAIt, Napoli 4-7 May 201
Dark matter scaling relations in intermediate z haloes
We investigate scaling relations between the dark matter (DM) halo model
parameters for a sample of intermediate redshift early - type galaxies (ETGs)
resorting to a combined analysis of Einstein radii and aperture velocity
dispersions. Modeling the dark halo with a Navarro - Frenk - White profile and
assuming a Salpeter initial mass function (IMF) to estimate stellar masses, we
find that the column density and the Newtonian acceleration within
the halo characteristic radius and effective radius are not
universal quantities, but correlate with the luminosity , the stellar mass
and the halo mass , contrary to recent claims in the
literature. We finally discuss a tight correlation among the DM mass
within the effective radius , the stellar mass
and itself. The slopes of the scaling relations
discussed here strongly depend, however, on the DM halo model and the IMF
adopted so that these ingredients have to be better constrained in order to
draw definitive conclusions on the DM scaling relations for ETGs.Comment: 8 pages, 1 figure, 4 tables, MNRAS submitted version (including
corrections after the referee report
- …