130 research outputs found

    Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function

    Get PDF
    Background. Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. Methods. We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle-and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. Results. Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. Conclusions. Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies

    Tyr682 in the Aβ-precursor protein intracellular domain regulates synaptic connectivity, cholinergic function, and cognitive performance.

    Get PDF
    Processing of Aβ-precursor protein (APP) plays an important role in Alzheimer's disease (AD) pathogenesis. The APP intracellular domain contains residues important in regulating APP function and processing, in particular the 682YENPTY687 motif. To dissect the functions of this sequence in vivo, we created an APP knock-in allele mutating Y682 to Gly (APP(YG/YG) mice). This mutation alters the processing of APP and TrkA signaling and leads to postnatal lethality and neuromuscular synapse defects when expressed on an APP-like protein 2 KO background. This evidence prompted us to characterize further the APP(YG/YG) mice. Here, we show that APP(YG/YG) mice develop aging-dependent decline in cognitive and neuromuscular functions, a progressive reduction in dendritic spines, cholinergic tone, and TrkA levels in brain regions governing cognitive and motor functions. These data are consistent with our previous findings linking NGF and APP signaling and suggest a causal relationship between altered synaptic connectivity, cholinergic tone depression and TrkA signaling deficit, and cognitive and neuromuscular decline in APP(YG/YG) mice. The profound deficits caused by the Y682 mutation underscore the biological importance of APP and indicate that APP(YG/YG) are a valuable mouse model to study APP functions in physiological and pathological processes

    NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease.

    Get PDF
    Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance

    Evaluation of the chemical and physical changes induced by KrF laser irradiation of tempera paints

    Get PDF
    A systematic study of the chemical and physical changes induced by exposure to UV (248 nm) excimer laser light of unvarnished tempera paint samples has been undertaken as a part of the research activities included in the European project "Advanced workstation for controlled laser cleaning of artworks". The direct exposure of the paint to the UV laser configures the worst case scenario of laser cleaning, as a thin protective layer of varnish is normally left to minimize the dose of UV radiation that reaches the paint surface. However, in the practice of laser cleaning, there is a need to characterize and quantify the possible effects of direct UV laser irradiation of unvarnished paints. To this purpose, a broad range of techniques have been used including profilometry, colorimetry, optical and vibrational spectroscopic techniques, such as laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), Fourier transform Raman (FTR) and infrared (FTIR), and analytical mass spectrometric techniques, like direct-temperature-resolved mass spectrometry (DTMS) and laser desorption and ionization time of flight mass spectrometry (LDI-TOF). Integration of the results obtained by these techniques allowed the investigation of the nature and degree of change of the irradiated paint systems. These were observed to strongly depend on the type of paint system. © 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

    Controlled UV laser cleaning of painted artworks: S systematic effect study on egg tempera paint samples

    Get PDF
    The Cooperative Research project “Advanced workstation for controlled laser cleaning of artworks” (ENV4-CT98-0787) has yielded important information on the application of UV laser cleaning to paint materials. In the project, in which conservators, researchers and engineers participated, the viability of the laser technique as an additional tool in present conservation practice was investigated. The research was pointed at the definition of the boundary conditions in which laser cleaning can be safely applied. It included a systematic effect study of tempera paint systems. Physical and chemical changes, induced by exposure to UV (248 nm) excimer laser light under various conditions, were evaluated. In parallel, an innovative laser cleaning tool was developed, allowing accurate and controlled removal of superficial layers from paint materials. Both aspects of the project are presented. The presentation of the research focuses on the integration of the results from various analytical techniques, yielding valuable information on the immediate and long-term effects of UV laser radiation on the paint materials. The analytical techniques include colorimetry, spectroscopic techniques, mass spectrometry and profilometry, as well as thermographic and UV transmission measurements. Furthermore, the application of the laser workstation on various painted artworks is shown. This includes the gradual removal of varnish layers and the recovery of original paint colour in fire-damaged paintings.The European Commission is gratefully acknowledged for facilitating the work in the Cooperative Research project “Advanced workstation for controlled laser cleaning of artworks” (ENV4-CT98-0787)

    Famosa: Evaluation of a multigene panel in patients with suspected HBOC

    Get PDF
    Background: Objectives: Characterize 1) the frequency of mutations in patients with clinical criteria for HBOC using a 25-gene panel in a Spanish population (FAMOSA study). 2) The psychological impact of these tests and patient''s counseling preferences. Methods: Patients with breast or ovarian cancer who met the NCCN criteria for genetic testing with a) prior testing for BRCA genes with NO mutation identified; or b) recently diagnosed (<6 months) and not genetically tested, were enrolled for multiplex cancer testing (MyRisk 25-gene panel). Participants completed self-questionnaires regarding geneting counseling preferences and three psychological scales (MICRA, CWS, R-IES) at base-line, one week, three and twelve months after results disclosure. Results: From November 14 to February 15, 210 patients were included in the FAMOSA study (109 HBOC). 61 (56%) patients were previously tested for BRCA1/2 gene mutations with conventional techniques; median age: 44y (22-77); gender: 3 males / 106 females; cancer types: breast 95 (87%); ovary 14 (13%). Overall 22 pathogenic variants were identified in 21 patients (19, 3%): 10 BRCA1, 2 BRCA2, 2 PALB2, 3 MUYTH, 1 CDKN2A; 2 ATM, 1 BRAD1, 1 BRIP1. One patient had an unexpected mutation in CDKN2A gene (gluteus sarcoma age 20; bilateral breast ca; ages 45 and 50; father lung ca, age 70; brother melanoma, age 35). Three patients had a significant mutation of a recessive condition in MUYTH. Of 61 patients previously tested negative for HBOC, 1 had a pathogenic variant in BRCA1 and 17/ 19 patients with VUS were classified negative in BRCA genes with MyRisk.Patients are willing to be disclosed all available information from panel testing. Differences were observed among type of results at short and mid-term. Cancer worry was higher in moderate-penetrance carriers than high penetrance carriers. Longer follow up is ongoing. Conclusions: Panel testing in patients with HBOC yielded a 19, 3% mutation rate, increasing the yield of genetic mutations beyond BRCA. Patients are willing to be disclosed all available information from panel testing

    Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse AD models

    Get PDF
    Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer\u2019s disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26\u201336aa of tau protein) could improve the Alzheimer\u2019s disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloid\u3b2 metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer\u2019s disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20\u201322 kDa NH2-terminal tau fragment is crucial target for Alzheimer\u2019s disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloid\u3b2-dependent and independent neuropathological and cognitive alterations in affected subject
    corecore