1,253 research outputs found
Search for methylamine in high mass hot cores
We aim to detect methylamine, CHNH, in a variety of hot cores and
use it as a test for the importance of photon-induced chemistry in ice mantles
and mobility of radicals. Specifically, CHNH cannot be formed from atom
addition to CO whereas other NH-containing molecules such as formamide,
NHCHO, can. Submillimeter spectra of several massive hot core regions were
taken with the James Clerk Maxwell Telescope. Abundances are determined with
the rotational diagram method where possible. Methylamine is not detected,
giving upper limit column densities between 1.9 6.4 10
cm for source sizes corresponding to the 100 K envelope radius. Combined
with previously obtained JCMT data analyzed in the same way, abundance ratios
of CHNH, NHCHO and CHCN with respect to each other and
to CHOH are determined. These ratios are compared with Sagittarius B2
observations, where all species are detected, and to hot core models. The
observed ratios suggest that both methylamine and formamide are overproduced by
up to an order of magnitude in hot core models. Acetonitrile is however
underproduced. The proposed chemical schemes leading to these molecules are
discussed and reactions that need further laboratory studies are identified.
The upper limits obtained in this paper can be used to guide future
observations, especially with ALMA.Comment: 14 pages, 5 figures, accepted for publication in A&
Nulling Emittance Measurement Technique for CLIC Test Facility
In order to test the principle of Two-Beam-Acceleration (TBA), the CLIC Test Facility utilizes a high-intensity drive beam of 640 to 1000 nC to generate 30 GHz accelerating fields. To ensure that the beam is transported efficiently, a robust measurement of beam emittance and Twiss parameters is required. This is accomplished by measuring the beam size on a profile monitor, while scanning five or more upstream quadrupoles in such a fashion that the Twiss parameters at the profile monitor remain constant while the phase advance through the beam line changes. In this way the beam size can be sampled at different phases while a near-constant size is of such measurement devices, especially those associated with limited dynamic range. In addition, the beam size is explicitly constant for a matched beam, which provides a ``nulling'' measurement of the match. Details of the technique, simulations, and results of the measurements are discussed
ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)
We present ExplainIt!, a declarative, unsupervised root-cause analysis engine
that uses time series monitoring data from large complex systems such as data
centres. ExplainIt! empowers operators to succinctly specify a large number of
causal hypotheses to search for causes of interesting events. ExplainIt! then
ranks these hypotheses, reducing the number of causal dependencies from
hundreds of thousands to a handful for human understanding. We show how a
declarative language, such as SQL, can be effective in declaratively
enumerating hypotheses that probe the structure of an unknown probabilistic
graphical causal model of the underlying system. Our thesis is that databases
are in a unique position to enable users to rapidly explore the possible causal
mechanisms in data collected from diverse sources. We empirically demonstrate
how ExplainIt! had helped us resolve over 30 performance issues in a commercial
product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201
Deep convolutional inverse graphics network
This paper presents the Deep Convolution Inverse Graphics Network (DC-IGN), a model that aims to learn an interpretable representation of images, disentangled with respect to three-dimensional scene structure and viewing transformations such as depth rotations and lighting variations. The DC-IGN model is composed of multiple layers of convolution and de-convolution operators and is trained using the Stochastic Gradient Variational Bayes (SGVB) algorithm [10]. We propose a training procedure to encourage neurons in the graphics code layer to represent a specific transformation (e.g. pose or light). Given a single input image, our model can generate new images of the same object with variations in pose and lighting. We present qualitative and quantitative tests of the model's efficacy at learning a 3D rendering engine for varied object classes including faces and chairs
Blind Normalization of Speech From Different Channels
We show how to construct a channel-independent representation of speech that
has propagated through a noisy reverberant channel. This is done by blindly
rescaling the cepstral time series by a non-linear function, with the form of
this scale function being determined by previously encountered cepstra from
that channel. The rescaled form of the time series is an invariant property of
it in the following sense: it is unaffected if the time series is transformed
by any time-independent invertible distortion. Because a linear channel with
stationary noise and impulse response transforms cepstra in this way, the new
technique can be used to remove the channel dependence of a cepstral time
series. In experiments, the method achieved greater channel-independence than
cepstral mean normalization, and it was comparable to the combination of
cepstral mean normalization and spectral subtraction, despite the fact that no
measurements of channel noise or reverberations were required (unlike spectral
subtraction).Comment: 25 pages, 7 figure
Beam Based Alignment of Interaction Region Magnets
In conventional beam based alignment (BBA) procedures, the relative alignment
of a quadrupole to a nearby beam position monitor is determined by finding a
beam position in the quadrupole at which the closed orbit does not change when
the quadrupole field is varied. The final focus magnets of the interaction
regions (IR) of circular colliders often have some specialized properties that
make it difficult to perform conventional beam based alignment procedures. At
the HERA interaction points, for example, these properties are: (a) The
quadrupoles are quite strong and long. Therefore a thin lens approximation is
quite imprecise. (b) The effects of angular magnet offsets become significant.
(c) The possibilities to steer the beam are limited as long as the alignment is
not within specifications. (d) The beam orbit has design offsets and design
angles with respect to the axis of the low-beta quadrupoles. (e) Often
quadrupoles do not have a beam position monitor in their vicinity. Here we
present a beam based alignment procedure that determines the relative offset of
the closed orbit from a quadrupole center without requiring large orbit changes
or monitors next to the quadrupole. Taking into account the alignment angle
allows us to reduce the sensitivity to optical errors by one to two orders of
magnitude. We also show how the BBA measurements of all IR quadrupoles can be
used to determine the global position of the magnets. The sensitivity to errors
of this method is evaluated and its applicability to HERA is shown
Emittance Growth during Bunch Compression in the CTF-II
Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occuring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause
Earthquake networks based on similar activity patterns
Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism
for which is still not fully understood despite decades of research and
analysis. We propose and develop a network approach to earthquake events. In
this network, a node represents a spatial location while a link between two
nodes represents similar activity patterns in the two different locations. The
strength of a link is proportional to the strength of the cross-correlation in
activities of two nodes joined by the link. We apply our network approach to a
Japanese earthquake catalog spanning the 14-year period 1985-1998. We find
strong links representing large correlations between patterns in locations
separated by more than 1000 km, corroborating prior observations that
earthquake interactions have no characteristic length scale. We find network
characteristics not attributable to chance alone, including a large number of
network links, high node assortativity, and strong stability over time.Comment: 8 pages text, 9 figures. Updated from previous versio
- …