1,253 research outputs found

    Search for methylamine in high mass hot cores

    Get PDF
    We aim to detect methylamine, CH3_{3}NH2_{2}, in a variety of hot cores and use it as a test for the importance of photon-induced chemistry in ice mantles and mobility of radicals. Specifically, CH3_3NH2_2 cannot be formed from atom addition to CO whereas other NH2_2-containing molecules such as formamide, NH2_2CHO, can. Submillimeter spectra of several massive hot core regions were taken with the James Clerk Maxwell Telescope. Abundances are determined with the rotational diagram method where possible. Methylamine is not detected, giving upper limit column densities between 1.9 −- 6.4 ×\times 1016^{16} cm−2^{-2} for source sizes corresponding to the 100 K envelope radius. Combined with previously obtained JCMT data analyzed in the same way, abundance ratios of CH3_{3}NH2_{2}, NH2_{2}CHO and CH3_{3}CN with respect to each other and to CH3_{3}OH are determined. These ratios are compared with Sagittarius B2 observations, where all species are detected, and to hot core models. The observed ratios suggest that both methylamine and formamide are overproduced by up to an order of magnitude in hot core models. Acetonitrile is however underproduced. The proposed chemical schemes leading to these molecules are discussed and reactions that need further laboratory studies are identified. The upper limits obtained in this paper can be used to guide future observations, especially with ALMA.Comment: 14 pages, 5 figures, accepted for publication in A&

    Nulling Emittance Measurement Technique for CLIC Test Facility

    Get PDF
    In order to test the principle of Two-Beam-Acceleration (TBA), the CLIC Test Facility utilizes a high-intensity drive beam of 640 to 1000 nC to generate 30 GHz accelerating fields. To ensure that the beam is transported efficiently, a robust measurement of beam emittance and Twiss parameters is required. This is accomplished by measuring the beam size on a profile monitor, while scanning five or more upstream quadrupoles in such a fashion that the Twiss parameters at the profile monitor remain constant while the phase advance through the beam line changes. In this way the beam size can be sampled at different phases while a near-constant size is of such measurement devices, especially those associated with limited dynamic range. In addition, the beam size is explicitly constant for a matched beam, which provides a ``nulling'' measurement of the match. Details of the technique, simulations, and results of the measurements are discussed

    ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)

    Full text link
    We present ExplainIt!, a declarative, unsupervised root-cause analysis engine that uses time series monitoring data from large complex systems such as data centres. ExplainIt! empowers operators to succinctly specify a large number of causal hypotheses to search for causes of interesting events. ExplainIt! then ranks these hypotheses, reducing the number of causal dependencies from hundreds of thousands to a handful for human understanding. We show how a declarative language, such as SQL, can be effective in declaratively enumerating hypotheses that probe the structure of an unknown probabilistic graphical causal model of the underlying system. Our thesis is that databases are in a unique position to enable users to rapidly explore the possible causal mechanisms in data collected from diverse sources. We empirically demonstrate how ExplainIt! had helped us resolve over 30 performance issues in a commercial product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201

    Deep convolutional inverse graphics network

    Get PDF
    This paper presents the Deep Convolution Inverse Graphics Network (DC-IGN), a model that aims to learn an interpretable representation of images, disentangled with respect to three-dimensional scene structure and viewing transformations such as depth rotations and lighting variations. The DC-IGN model is composed of multiple layers of convolution and de-convolution operators and is trained using the Stochastic Gradient Variational Bayes (SGVB) algorithm [10]. We propose a training procedure to encourage neurons in the graphics code layer to represent a specific transformation (e.g. pose or light). Given a single input image, our model can generate new images of the same object with variations in pose and lighting. We present qualitative and quantitative tests of the model's efficacy at learning a 3D rendering engine for varied object classes including faces and chairs

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    Beam Based Alignment of Interaction Region Magnets

    Full text link
    In conventional beam based alignment (BBA) procedures, the relative alignment of a quadrupole to a nearby beam position monitor is determined by finding a beam position in the quadrupole at which the closed orbit does not change when the quadrupole field is varied. The final focus magnets of the interaction regions (IR) of circular colliders often have some specialized properties that make it difficult to perform conventional beam based alignment procedures. At the HERA interaction points, for example, these properties are: (a) The quadrupoles are quite strong and long. Therefore a thin lens approximation is quite imprecise. (b) The effects of angular magnet offsets become significant. (c) The possibilities to steer the beam are limited as long as the alignment is not within specifications. (d) The beam orbit has design offsets and design angles with respect to the axis of the low-beta quadrupoles. (e) Often quadrupoles do not have a beam position monitor in their vicinity. Here we present a beam based alignment procedure that determines the relative offset of the closed orbit from a quadrupole center without requiring large orbit changes or monitors next to the quadrupole. Taking into account the alignment angle allows us to reduce the sensitivity to optical errors by one to two orders of magnitude. We also show how the BBA measurements of all IR quadrupoles can be used to determine the global position of the magnets. The sensitivity to errors of this method is evaluated and its applicability to HERA is shown

    Emittance Growth during Bunch Compression in the CTF-II

    Get PDF
    Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occuring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause

    Earthquake networks based on similar activity patterns

    Full text link
    Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross-correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 km, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time.Comment: 8 pages text, 9 figures. Updated from previous versio
    • …
    corecore