67 research outputs found

    Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    Get PDF
    BackgroundTwo congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation.Hypothesis/objectivesPlatelet dysfunction in horses with this second thrombasthenia results from a secretory defect.AnimalsTwo affected and 6 clinically normal horses.MethodsEx vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1).ResultsPlatelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation.Conclusions and clinical significanceDefects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia

    Thrombocytogenesis by megakaryocyte; Interpretation by protoplatelet hypothesis

    Get PDF
    Serial transmission electron microscopy of human megakaryocytes (MKs) revealed their polyploidization and gradual maturation through consecutive transition in characteristics of various organelles and others. At the beginning of differentiation, MK with ploidy 32N, e.g., has 16 centrosomes in the cell center surrounded by 32N nucleus. Each bundle of microtubules (MTs) emanated from the respective centrosome supports and organizes 16 equally volumed cytoplasmic compartments which together compose one single 32N MK. During the differentiation, single centriole separated from the centriole pair, i.e., centrosome, migrates to the most periphery of the cell through MT bundle, corresponding to a half of the interphase array originated from one centrosome, supporting one “putative cytoplasmic compartment” (PCC). Platelet demarcation membrane (DM) is constructed on the boundary surface between neighbouring PCCs. Matured PCC, composing of a tandem array of platelet territories covered by a sheet of DM is designated as protoplatelet. Eventually, the rupture of MK results in release of platelets from protoplatelets

    Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster

    Get PDF
    Drosophila melanogaster experience cold shock injury and die when exposed to low non-freezing temperatures. In this study, we generated transgenic D. melanogaster that express putative Ixodes scapularis antifreeze glycoprotein (IAFGP) and show that the presence of IAFGP increases the ability of flies to survive in the cold. Male and female adult iafgp-expressing D. melanogaster exhibited higher survival rates compared with controls when placed at non-freezing temperatures. Increased hatching rates were evident in embryos expressing IAFGP when exposed to the cold. The TUNEL assay showed that flight muscles from iafgp-expressing female adult flies exhibited less apoptotic damage upon exposure to non-freezing temperatures in comparison to control flies. Collectively, these data suggest that expression of iafgp increases cold tolerance in flies by preventing apoptosis. This study defines a molecular basis for the role of an antifreeze protein in cryoprotection of flies

    Platelet Activation in Cats with Hypertrophic Cardiomyopathy

    No full text
    corecore