8,669 research outputs found

    Enhancement of metabolite production in high-altitude microalgal strains by optimized C/N/P ratio

    Get PDF
    This study evaluated the role of C/N/P in the increase in the synthesis of carbohydrates, proteins, and lipids in two high-mountain strains of algae (Chlorella sp. UFPS019 and Desmodesmus sp. UFPS021). Three carbon sources (sodium acetate, sodium carbonate, and sodium bicarbonate), and the sources of nitrogen (NaNO3) and phosphate (KH2PO4 and K2HPO4) were analyzed using a surface response (3 factors, 2 levels). In Chlorella sp. UFPS019, the optimal conditions to enhance the synthesis of carbohydrates were high sodium carbonate content (3.53 g/L), high KH2PO4 and K2HPO4 content (0.06 and 0.14 g/L, respectively), and medium-high NaNO3 (0.1875 g/L). In the case of lipids, a high concentration of sodium acetate (1.19 g/L) coupled with high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively) and a low concentration of NaNO3 (0.075 g/L) drastically induced the synthesis of lipids. In the case of Desmodesmus sp. UFPS021, the protein content was increased using high sodium acetate (2 g/L), high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively), and high NaNO3 concentration (0.25 g/L). These results demonstrate that the correct adjustment of the C/N/P ratio can enhance the capacity of high-mountain strains of algae to produce high concentrations of carbohydrates, proteins, and lipids

    The effect of temperature and enzyme concentration in the transesterification process of synthetic microalgae oil

    Get PDF
    Throughout the world, the fossil fuel has supplied around the 80% of the energetic requirements, in Colombia alone 95.1% of energetic demand is made by the transportation sector solely, supplied by oil, kerosene, gasoline and diesel, this sector has an extremely small participation with biofuel of 3%, which is represented only by biodiesel. Microalgae had been proposed as biofactories with a remarkable third generation biofuels production. The culture of the microorganism comprehends interesting characteristics as countless environments where its natural growth could be replicated in fresh, salty and even sewage waters, with a higher growth rate and a higher oil production. The implementation of enzymes in the transesterification process have generated a good curiosity in the field, due to its mild reactions conditions, lesser energetic requirements, a high standard in the selection of the enzymes with the objective of avoiding the formation of soaps, creating in this way cleaner products and sub-products, in which the separation of the phases biodiesel/glycerol, give the possibility to recuperate the bio catalyzer and high output of reactions. However, the high volume of medium required to obtain lipids is one of the major drawbacks to test the viability of these enzymes. The present study aims to design an enzymatic transesterification process for the production of biodiesel form synthetic Chlorella oil. The synthetic oil was designed according to the lipid profile of C 16:0, C16:1, C18:0, C18:1, C18:2 and C18:3 from Chlorella spp CHL2 cultured on Bold Basal media under limited concentrations of NaNO3. The enzymatic transesterification efficiency was evaluated by the implementation of a 22 experimental factorial design (temperature and lipase concentration) under a 3: 1 molar ratio of alcohol:oil and a fixed reaction time of 6 hours. The obtained results show that, in order to obtain superior yields of biodiesel (>91%) the transesterification process must be carried out under temperature conditions close to 38°C and lipase concentrations of 5%

    Fisheries wastewater as a sustainable media for the production of algae-based products

    Get PDF
    Colombian intensive fish production is concentrated mainly in the departments of the Andean Region, Amazon, and Orinoquía. These systems were characterized for being exploited mainly by family farming nuclei, which are dedicated exclusively to breeding and others with mixed systems. Currently, the sustainable development of this economic line depends on two factors: global warming and the consumption of resources (energy, fresh water, and protein). The rapid growth of this socio-economic line has led to the development of 3 critical restrictions: the demand for food for fish production, the high volume of fresh water needed and the high concentration of wastewater which must be disposed of safely. Sewage from closed fish farming systems has high levels of nitrogen and inorganic phosphorus dissolved in the systems. The primary responsibility for these high contents is the feed which contributes to the sustained increase in the concentration of organic waste and toxic compounds in aquatic systems. To make use of this wastewater, the use of these as a culture medium for microalgal production has been studied in order to generate metabolites of industrial interest from a low-cost culture medium. In this work, the necessary culture conditions for the biomass production of Scenedesmus obliquus, Chlorella vulgaris, Spirulina maxima, and Oscillatoria sp. in fish farming wastewater to produce pigments and total biomass are evaluated. The wastewater was obtained from an intensive fish farming company in El Zulia (Norte de Santander, Colombia). The medium was UV-sterilized (4 Lamps of 15W, 5 minutes). In order to optimize the production of biomass and pigments, the wastewater was adjusted with the addition of nitrogen, phosphorus, and carbon (K2HPO4 + NaNO3 + NaHCO3) According to the results, the residual water enriched with K2HPO4, NaNO3 and NaHCO3 presented the best culture conditions for obtaining carotenoids (in C. vulgaris and S. obliquus with values of 2.6 and 1.7% p/p respectively) and Phycobiliproteins in Spirulina maxima and Oscillatoria sp (10.9 and 11% p/p respectively). These results allow concluding that the residual water of fish systems is outlined as a suitable culture medium that can be used to produce metabolites of interest. Also, this culture medium must be enriched in order to increase the productivity of the system

    A simulation analysis of an influenza vaccine production plant in areas of high humanitarian flow. A preliminary study for the region of norte de santander (colombia)

    Get PDF
    The production of vaccines of biological origin presents a tremendous challenge for re-searchers. In this context, animal cell cultures are an excellent alternative for the isolation and production of biologicals against several viruses, since they have an affinity with viruses and a great capacity for their replicability. Different variables have been studied to know the system’s ideal parameters, allowing it to obtain profitable and competitive products. Consequently, this work fo-cuses its efforts on evaluating an alternative for producing an anti‐influenza biological from MDCK cells using SuperPro Designer v8.0 software. The process uses the DMEN culture medium supple-mented with nutrients as raw material for cell development; the MDCK cells were obtained from a potential scale‐up with a final working volume of 500 L, four days of residence time, inoculum volume of 10%, and continuous working mode with up to a total of 7400 h/Yr of work. The scheme has the necessary equipment for the vaccine’s production, infection, and manufacture with yields of up to 416,698 units/h. In addition, it was estimated to be economically viable to produce recom-binant vaccines with competitive prices of up to 0.31 USD/unit

    RET signalling provides tumorigenic mechanism and tissue specificity for AIP-related somatotrophinomas

    Get PDF
    International audienceIt is unclear how loss-of-function germline mutations in the widely-expressed co-chaperone AIP , result in young-onset growth hormone secreting pituitary tumours. The RET receptor, uniquely co-expressed in somatotrophs with PIT1, induces apoptosis when unliganded, while RET supports cell survival when it is bound to its ligand. We demonstrate that at the plasma membrane, AIP is required to form a complex with monomeric-intracellular-RET, caspase-3 and PKCδ resulting in PIT1/CDKN2A-ARF/p53-apoptosis pathway activation. AIP-deficiency blocks RET/caspase-3/PKCδ activation preventing PIT1 accumulation and apoptosis. The presence or lack of the inhibitory effect on RET-induced apoptosis separated pathogenic AIP variants from non-pathogenic ones. We used virogenomics in neonatal rats to demonstrate the effect of mutant AIP protein on the RET apoptotic pathway in vivo. In adult male rats altered AIP induces elevated IGF-1 and gigantism, with pituitary hyperplasia through blocking the RET-apoptotic pathway. In females, pituitary hyperplasia is induced but IGF-1 rise and gigantism are blunted by puberty. Somatotroph adenomas from pituitary-specific Aip -knockout mice overexpress the RET-ligand GDNF, therefore, upregulating the survival pathway. Somatotroph adenomas from patients with or without AIP mutation abundantly express GDNF, but AIP -mutated tissues have less CDKN2A-ARF expression. Our findings explain the tissue-specific mechanism of AIP-induced somatotrophinomas and provide a previously unknown tumorigenic mechanism, opening treatment avenues for AIP -related tumours

    Application of Chlorella sp. and Scenedesmus sp. in the bioconversion of urban leachates into industrially relevant metabolites

    Get PDF
    This paper explores the ability of Chlorella sp. and Scenedesmus sp. to convert landfill leachates into usable metabolites. Different concentrations (0.5, 1, 5, and 10% v/v) of leachate coupled with an inorganic carbon source (Na2CO3, and NaHCO3) were tested to improve biomass production, metabolites synthesis, and removal of NO3 and PO4 . The result shows that both strains can effectively grow in media with up to 5% (v/v) leachate, while significantly reducing the concentrations of NO3, and PO4 (80 and 50%, respectively). The addition of NaHCO3 as a carbon source improved the final concentration of biomass, lipids, carbohydrates, and the removal of NO3 and PO4 in both strains

    POLAR: a compact detector for GRB polarization measurements

    Get PDF
    Présenté par J.P. VialleInternational audienceThrough polarization measurements of X-rays can provide essential information for identifying processes responsible of their emission by astrophysical objects, almost no experimental data exist yet. We propose here a novel wide field compact detector for hard X-ray polarization measurements based on Compton scattering process and made of low-Z fast scintillators
    corecore