
����������
�������

Citation: Ortiz-Betancur, J.J.; Herrera-

Ochoa, M.S.; García-Martínez, J.B.;

Urbina-Suarez, N.A.; López-Barrera,

G.L.; Barajas-Solano, A.F.; Bryan, S.J.;

Zuorro, A. Application of Chlorella sp.

and Scenedesmus sp. in the

Bioconversion of Urban Leachates

into Industrially Relevant

Metabolites. Appl. Sci. 2022, 12, 2462.

https://doi.org/10.3390/app12052462

Academic Editor: Sébastien Jubeau

Received: 8 February 2022

Accepted: 25 February 2022

Published: 26 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Application of Chlorella sp. and Scenedesmus sp. in the
Bioconversion of Urban Leachates into Industrially
Relevant Metabolites
Jeimy J. Ortiz-Betancur 1, Marla S. Herrera-Ochoa 1, Janet B. García-Martínez 1 , Néstor A. Urbina-Suarez 1 ,
Germán L. López-Barrera 1 , Andrés F. Barajas-Solano 1 , Samantha J. Bryan 2 and Antonio Zuorro 3,*

1 Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia
No. 12E-96, Cucuta 540003, Colombia; jeimyjuliethob@ufps.edu.co (J.J.O.-B.);
marlasunlyho@ufps.edu.co (M.S.H.-O.); janetbibianagm@ufps.edu.co (J.B.G.-M.);
nestorandresus@ufps.edu.co (N.A.U.-S.); lucianolb@ufps.edu.co (G.L.L.-B.);
andresfernandobs@ufps.edu.co (A.F.B.-S.)

2 Department of Chemical and Environmental Engineering, University of Nottingham,
Nottingham NG7 2RD, UK; samantha.bryan@nottingham.ac.uk

3 Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18,
00184 Roma, Italy

* Correspondence: antonio.zuorro@uniroma1.it

Abstract: This paper explores the ability of Chlorella sp. and Scenedesmus sp. to convert landfill
leachates into usable metabolites. Different concentrations (0.5, 1, 5, and 10% v/v) of leachate coupled
with an inorganic carbon source (Na2CO3, and NaHCO3) were tested to improve biomass production,
metabolites synthesis, and removal of NO3 and PO4. The result shows that both strains can effectively
grow in media with up to 5% (v/v) leachate, while significantly reducing the concentrations of NO3,
and PO4 (80 and 50%, respectively). The addition of NaHCO3 as a carbon source improved the final
concentration of biomass, lipids, carbohydrates, and the removal of NO3 and PO4 in both strains.

Keywords: Chlorella sp.; Scenedesmus sp.; lipids; waste reduction; nutrients removal

1. Introduction

One of the primary wastes from landfills is leachate [1]. Landfill leachate is one of
the most complex liquid wastes to treat due to its high content of recalcitrant organic
compounds, salts, high concentration of ammonia nitrogen, nitrates, phosphates, and
dissolved metals [2]. To date, there are different technologies (physical, chemical, and
even biological) available for the treatment of this type of waste [3]. However, their low
efficiency in reducing the pollutant capacity of this type of liquid waste and their low
economic sustainability have led researchers worldwide to explore new technologies [4].

Microalgae and cyanobacteria are highly diverse photosynthetic microorganisms
found in diverse aquatic environments [5]. They are considered one of the novel biotechno-
logical sources of different metabolites such as lipids, carotenoids, proteins, carbohydrates,
bioplastics, auxins, mycosporine-like amino acids (MAA), and others [6]. One of the most
exciting applications of algae is the removal of nutrients from polluted waters, or phytore-
mediation [7–13]. Phytoremediation using microalgae is not new since the first studies
were carried out in San Obispo (California) by William J. Oswald’s group in the mid-1950s.
By employing this principle, it is possible to valorize certain effluents while reducing their
impact and producing biomass with metabolites of industrial interest [14,15].

According to a SCOPUS search with the keywords “Landfill AND Leachate AND
alga”, during the last 22 years, about 102 scientific papers have been published (Figure 1a),
especially in countries like China, United States, Brazil, and others (Figure 1b), which is few
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compared to other types of wastewaters treated with microalgae. The latter demonstrates
the growing interest in searching for strains resistant to landfill leachates.
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The application of algae and cyanobacteria to remove contaminants possesses limita-
tions, such as the high energy input required for the harvesting of biomass [16–19] and the se-
lection of the proper strain capable of withstanding the toxicity of leachate. Due to the unique
chemical composition of this type of waste, a strain (or several strains) with high-growth
capacity has not been isolated so far [20]. During the last few years, strains from different gen-
era of microalgae and cyanobacteria such as Chlamydomonas sp. [21,22], Chlorella sp. [1,22–33],
Desmodesmus sp. [23,34], Picochlorum sp. [35], Scenedesmus sp. [23,24,28,29,34], Stigeoclo-
nium sp. [23], Tetradesmus sp. [26], Microcystis sp. [23], Oscillatoria sp. [23,28]; and even a
consortium of microalgae [20] have been studied. Table 1 shows that the most reported
concentration of leachate is 10% v/v [20,22,23,28–30,33]; however, some authors claim
that higher concentrations of leachate (from 20%, up to undiluted leachate) can also be
used by algae and cyanobacteria [24,26,32,36]. In a different approach, Kumari et al. [37]
demonstrated that a microalgae-bacteria consortium (Scenedesmus sp. and Paenibacillus sp.)
can effectively grow in a media with 20% v/v of leachate, thus removing toxic elements
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such as heavy metals and organic compounds. The objective of this study was to evaluate
the viability of two strains of thermo-tolerant algae to grow in landfill leachate and their
synthesis of usable metabolites such as carbohydrates and lipids, offering an alternative
for the reduction of the hazardous potential of landfill leachate and the production of high
value-added metabolites.

Table 1. Strains of algae and cyanobacteria cultured on different concentrations of landfill leachate.

Strain Leachate Concentration
(% v/v)

Biomass Concentration
(g·dm−3) Reference

Algal consortium 10 2.4 [20]
Chlamydomonas sp.

SW15aRL 30 2.99 [21]

Ch. snowiae

10

n/a * [22]

Chlorella sp.

8.2 [23]
n/a * [29]

1.2 [30]
15 0.34 [28]

Chlorella minutissima 26a 10 1.1 [25]

C. vulgaris
20

4 [26]
n/a * [24]

5 0.45 [27]
50 1.92 [32]

C. vulgaris FACHB-31 10 1.64 [31]
100 2.13 [33]

C. pyrenoidosa 10 n/a * [22]
C. pyrenoidosa (FACHB-9) 20 1.58 [1]

Desmodesmus sp. 7 1.3 [34]
Desmodesmus subspicatus
(Brinkmann 1953/SAG) 20 n/a * [24]

Microcystis sp.
10

8.1
[23]

Oscillatoria sp. 8.0
20 0.8 [28]

Picochlorum oculatum

10

1.9 [35]

Scenesdesmus sp.
8.12 [23]

n/a * [29]
0.16 [28]

S. obliquus 7 1.2 [34]
Stigeoclonium sp. 10 8.1 [23]

Tetradesmus obliquus 15 0.56 [26]
n/a *: Data non-available.

2. Materials and Methods
2.1. Landfill Leachate

The leachate (mature leachate) was kindly supplied by “Parque Tecnológico Am-
biental Guayabal” (Cúcuta, Norte de Santander) and its chemical composition (nitrates,
phosphates, pH, conductivity, temperature, total dissolved solids, total suspended solids
volatile suspended solids, salinity, BOD5, and COD) was analyzed according to standard
methods for the examination of water and wastewater [38].

2.2. Strains

Chlorella sp. (CHLO_UFPS010), and Scenedesmus sp. (SCEN_UFPS015) from INNOVal-
gae collection (UFPS, Colombia) were used in this study. The strains were maintained in a
2 L glass flask containing 1.2 L of sterile Bold Basal [39]. Each flask was mixed through the
injection of filtered air with 0.5% (v/v) CO2 at a flow rate of 0.78 L min−1(Resun, LP-100),
25 ◦C, and light-dark cycle of 12:12 h at 100 µmol m−2 s−1 for 30 days.
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2.3. Experimental Design

The leachate was initially diluted (0.5, 1, 5, and 10% v/v). The concentration that
enhanced the biomass production on both strains was later supplemented with different
concentrations (0.8, 1.2, and 1.6 g·dm−3) of either sodium carbonate (Na2CO3) or sodium
bicarbonate (NaHCO3) [40] prior to inoculation. As a control, both strains were cultured
in a Bold Basal medium (BBM). The results were analyzed using a two-way ANOVA
GraphPad Prism version 9.

All the strains were cultured (by triplicate) in a 2 L glass flask with a working volume
of 1.2 L of sterile leachate. Each flask was mixed through the injection of filtered air at a flow
rate of 0.78 L min−1 (Resun, LP-100) and a light-dark cycle of 12:12 h at 110 µmol m−2 s−1

for 30 days. The biomass produced was harvested by centrifugation (3400 rpm, 20 min,
−20 ◦C) (Rotina 420-R, Hettich, Tuttlingen, Germany), washed thrice with distilled water,
freeze-dried (FreeZone 4.5, Labconco, Kansas City, MO, USA), and stored (4 ◦C) until use.
Finally, the different components of the biomass such as carbohydrates [41], lipids [42],
proteins [43], carotenoids [44], and ash [45] were measured. The cells-free media was
analyzed for their content of nitrates and phosphates.

3. Results

Leachate is known for its dark brown color, unpleasant odor, and high nitrogen but
low phosphate concentration (Table 2). The measurement of BOD5 and COD parameters
is directly related to organic matter contamination and the age of a landfill, as this factor
plays a fundamental role in the leachate composition [46].

Table 2. Characterization of landfill leachate.

Parameters Units Mean Value

Nitrates (NO3) mg·dm−3 NO3 71 ± 0.04
Phosphates (PO4) mg·dm−3 PO4 1.05 ± 0.07

pH pH units 9.74 ± 0.1
Temperature ◦C 25.10 ± 0.5
Conductivity µS 35 ± 0.5

Total Dissolved Solids (TDS) mg·dm−3 2.31 × 10−5

Salinity mg·dm−3 1.75 × 10−5

Chemical Oxygen Demand (COD) mg·dm−3 630 ± 0.02
Biochemical Oxygen Demand (BOD5) mg·dm−3 2.93 ± 0.05

Total solids (TS) mg·dm−3 20.73 ± 0.1
Total Suspended Solids (TSS) mg·dm−3 0.08 ± 0.01

Volatile Suspended Solids (VSS) mg·dm−3 0.04 ± 0.01

For the growth of microalgae, four concentrations of leachate were used: 0.5, 1, 5, and
10% v/v; however, according to the ANOVA analysis, the 10% v/v of leachate recorded the
lowest biomass in comparison with the control (Figure 2). It was also possible to identify
that a concentration of 5% favors biomass production in the two strains studied. According
to the results, Chlorella sp. increased biomass production up to 0.6 g·dm−3, which is due to
the increase of nitrate and phosphate content in the medium; on the contrary, there was no
significant difference in the biomass produced at different concentrations of leachate using
Scenedesmus sp.

The removal of nitrate and phosphate is presented in Figure 3. According to the
ANOVA analysis, there is a significant difference in the removal of NO3 and PO4, in both
Chlorella sp and Scenedesmus sp. using 5% v/v of leachate. Chlorella sp. was able to remove
81.87% and 56.78% of NO3 and PO4 respectively. In the case of Scenedesmus sp. this strain
was able to remove 90% and 54% of NO3 and PO4 respectively.
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The biomass production using Na2CO3 and NaHCO3 at different concentrations (0.8,
1.2, and 1.6 g·dm−3), and the removal of NO3 and PO4 can be found in Figure 4. In the case
of Chlorella sp. NaHCO3 enhanced the biomass concentration up to 1.23 g·dm−3 (using
1.6 g·dm−3 of NaHCO3), which according to the ANOVA analysis is higher than the other
concentrations evaluated. On the other hand, different concentrations of Na2CO3 did
not increase the final concentration of biomass compared to the control. In the case of
Scenedesmus sp., 0.8 g·dm−3 of NaHCO3 was enough to increase the biomass concentration
up to 0.77 g·dm−3. Higher concentrations of both NaHCO3 and Na2CO3 reduced the
final content of biomass in this alga. Another important result is the removal of NO3
and PO4 using different carbon sources. According to the ANOVA analysis, there is not
much difference in the removal of either NO3 or PO4 when both strains were grown
using NaHCO3 in comparison with the control (alga grown in 5% v/v leachate). The only
significant difference recorded was found in the removal of NO3 when Chlorella sp. was
grown using different concentrations of NaHCO3.
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The concentration of the different metabolites analyzed are presented in Figure 5. In
the case of carbohydrates, different concentrations of NaHCO3, and Na2CO3 increased the
final concentration in Chlorella sp. Most studies using leachate as a source of nutrients for
algal production mainly report the concentration of carbohydrates and lipids. However,
other metabolites such as proteins and carotenoids must be measured and reported. To the
best of the author’s knowledge, this is the first study that reports the effect of leachate on the
concentration of carbohydrates, lipids, proteins, and carotenoids. The highest concentration
of carbohydrates (28% w/w) was achieved using 1.2 g·dm−3 of NaHCO3. In the case of
Scenedesmus sp., only NaHCO3 enhanced the concentration of carbohydrates (27% w/w)
over the control (23% w/w). In the synthesis of total proteins, both NaHCO3 and Na2CO3
reduced their concentration in Chlorella sp. On the other hand, 1.6 g·dm−3 of NaHCO3
increased the concentration of up to 46% w/w of proteins in Scenedesmus sp. In the case of
lipids, 1.2 g·dm−3 of Na2CO3 increased its concentration (8%) in Chlorella sp. in comparison
to the control. In Scenedesmus sp. 1.2 g·dm−3 of NaHCO3 increased the concentration by up
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to 8% w/w. The concentration of total carotenoids was increased up to 8% (w/w) in Chlorella
sp. (0.8 g·dm−3 of Na2CO3); in contrast, none of the evaluated carbon sources enhanced
the concentration of total carotenoids in Scenedesmus sp. Finally, the concentration of total
ashes increased from 11 to 15% w/w in all the treatments for both algae.

Appl. Sci. 2022, 12, 2462 7 of 12 
 

comparison to the control. In Scenedesmus sp. 1.2 g‧dm−3 of NaHCO3 increased the 
concentration by up to 8% w/w. The concentration of total carotenoids was increased up 
to 8% (w/w) in Chlorella sp. (0.8 g‧dm−3 of Na2CO3); in contrast, none of the evaluated 
carbon sources enhanced the concentration of total carotenoids in Scenedesmus sp. Finally, 
the concentration of total ashes increased from 11 to 15% w/w in all the treatments for both 
algae. 

 
(a) 

 
(b) 

Figure 5. Production of metabolites of industrial interest at different carbonate and bicarbonate 
concentrations in Chlorella sp. (a) and Scenedesmus sp. (b). 

4. Discussion 
Sustainable production of feedstocks for different commercial purposes such as fuels, 

plastics, dyes, and others [5] is one of the main pillars to improve the sustainability of 
microalgae and cyanobacteria biomass-based bioprocesses [47]. The physicochemical 
characterization of the leachate shows that it has a pH of 9.74, which would allow optimal 
growth of most microalgae and cyanobacteria [37]. According to Kurniawan et al. [48], 
leachates less than one-year-old (young leachates) contain high COD concentrations (>15 
g‧dm−3). On the contrary, leachates from stabilized landfills (older than five years) contain 
shallow COD concentration (<3 g‧dm−3), which is comparable to the COD observed in 
Table 2 with a value of 2.93 g ‧ dm−3, thus indicating that the leachate employed 
corresponds to old landfill leachate. During the last 20 years, different researchers have 
evaluated the ability of different strains to grow in culture media enriched with landfill 
leachate; however, different results have proved that microalgae could not withstand the 
toxicity of the medium due to the high concentrations of contaminants, causing inhibition 
in their growth due to a deficiency in their metabolization process [23].  

High nitrogen concentrations ensure efficient phosphorus removal in the leachate 
[47]. According to Nordin et al. [28], some algae adapted to leachate can remove high 
concentrations of Nitrate and Phosphate. In their case, strains belonging to Chlorella, 
Scenedesmus, and Oscillatoria sp. isolated from Jeram sanitary landfill (Malaysia) can 
remove up to 380 mg‧dm−3 of NO3. In another research, Porto et al. [26] used 5% of 
leachate and removed up to 65% of NO3 and 31% of PO4 using C. vulgaris. On the other 

Figure 5. Production of metabolites of industrial interest at different carbonate and bicarbonate
concentrations in Chlorella sp. (a) and Scenedesmus sp. (b).

4. Discussion

Sustainable production of feedstocks for different commercial purposes such as fuels,
plastics, dyes, and others [5] is one of the main pillars to improve the sustainability of mi-
croalgae and cyanobacteria biomass-based bioprocesses [47]. The physicochemical charac-
terization of the leachate shows that it has a pH of 9.74, which would allow optimal growth
of most microalgae and cyanobacteria [37]. According to Kurniawan et al. [48], leachates
less than one-year-old (young leachates) contain high COD concentrations (>15 g·dm−3).
On the contrary, leachates from stabilized landfills (older than five years) contain shallow
COD concentration (<3 g·dm−3), which is comparable to the COD observed in Table 2
with a value of 2.93 g·dm−3, thus indicating that the leachate employed corresponds to old
landfill leachate. During the last 20 years, different researchers have evaluated the ability of
different strains to grow in culture media enriched with landfill leachate; however, different
results have proved that microalgae could not withstand the toxicity of the medium due
to the high concentrations of contaminants, causing inhibition in their growth due to a
deficiency in their metabolization process [23].

High nitrogen concentrations ensure efficient phosphorus removal in the leachate [47].
According to Nordin et al. [28], some algae adapted to leachate can remove high concentra-
tions of Nitrate and Phosphate. In their case, strains belonging to Chlorella, Scenedesmus,
and Oscillatoria sp. isolated from Jeram sanitary landfill (Malaysia) can remove up to
380 mg·dm−3 of NO3. In another research, Porto et al. [26] used 5% of leachate and re-
moved up to 65% of NO3 and 31% of PO4 using C. vulgaris. On the other hand, when
Tetradesmus obliquus was grown in medium with 15% v/v of leachate, only 56% of NO3 and
29% of PO4 present could be removed. However, the medium of T. obliquus contained
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3 times more leachate, so the concentrations removed by the two strains are relatively
close. Other results such as those presented by Paskuliakova et al. [21] demonstrate the
ability of Chlamydomonas sp. SW15aRL to remove 97% of the PO4 present in a system
with 30% leachate. On the other hand, Chang et al. [36] were able to remove 99% of NH4
and 100% of PO4 by growing C. vulgaris in a culture medium with 50% leachate. Other
works such as Chang et al. [32] evaluated the growth of C. vulgaris in undiluted leachate.
Their results show that it is possible to remove up to 96% of NH4

+NO3 and 100% of PO4
present in undiluted leachate. It is noteworthy that Chang et al. [32] designed a scalable
membrane-based tubular photobioreactor (SM-PBR), which allowed reducing the contact of
the cells with the culture medium, thus reducing the toxic effect of the leachate on the cells.

The addition of a carbon source is one of the most important parts of algal production,
since this microorganism is considered a sustainable carbon sink. CO2 is the most frequent
source. In the photoautotrophic culture, the CO2 reacts with the different salts in the media
producing carbonate ions (HCO3

−). These ions can flow through the algal membrane
and be used in the chloroplast [47]. Therefore, supplementing the leachate with different
concentrations of sodium carbonate or sodium bicarbonate will eventually improve the
growth of the microalgae and reduce the polluting capacity of the leachate. According
to the results reported in this work, the addition of NaHCO3, especially in Chlorella sp.
significantly increased the final biomass concentration; however, the removal of NO3 and
PO4 did not increase in the same way as the biomass. This may be due to the lighting
conditions inside the culture flask since high biomass concentrations and the characteristic
color of the leachate (present in dilutions of 5% v/v) may reduce the ability of light to
penetrate the flask and reduce photosynthetic capacity.

Different researchers have documented the efficiency of adding inorganic carbona-
ceous salts to algal cultures. White et al. [33] reported how the addition of NaHCO3
significantly increased biomass and pigment concentrations. Other authors such as Pan-
cha et al. [49] found that 0.6 g·dm−3 of NaHCO3 boosts up to a 23% higher concentration on
a strain of Scenedesmus sp. This specific result is similar to the final concentration achieved
in this research. Na2CO3 has also been highlighted as having its positive effects in terms of
high biomass production and lipid increase. Duan et al. [50] reported that 20 mg·dm−3 of
Na2CO3 increased two-fold the final concentration of S. obliquus. Finally, a study found
that the controlled addition of Na2CO3 coupled with NO3 in a specific C/N ratio can
dramatically increase the concentration of biomass and hydrocarbons in B. braunii [40].

When considering algal production in landfill leachates, the first metabolites that
come to mind are lipids and carbohydrates. Both metabolites are important for their
application as raw material to produce biodiesel and bioethanol [5]. Since most of the
studied wastewaters cannot be employed to produce food or feed products, the energetic
focus is the next step towards the sustainability of the algal production system. Therefore,
most studies focus heavily on the effect of the leachate concentration on the synthesis
of lipids and carbohydrates [51–56]. The work of Pancha et al. [49] proved that nitrate
depletion together with stepwise addition of NaHCO3 enhances the synthesis of lipids.
These results are in accordance with the work of Li et al. [57], who found that a high
concentration of NaHCO3 in Chlorella sp. for example, 160 Mm (13.33 g·dm−3), stimulated
lipid accumulation, although it inhibits cell growth.

According to Cuellár-García et al. [58,59], the type and concentration of the carbon
source are particular to every single strain. Some are adapted to high carbonaceous
environments, while others do not tolerate high levels of this ion, which in turn may
synthesize more or carbohydrates, lipids, or even proteins. In a recent study, Vijay et al. [60]
found that the addition of NaHCO3 substantially increased the protein content in S. obtusus.
Since the first two are the goal for many studies, the last may hinder the thermal efficiency
of the biomass produced [61–65]. Carotenoids are considered high-value metabolites of
great interest as nutraceuticals [60] which may not have value since the biomass was
produced on leachate. Therefore, these low-cost carotenoids can be exploited as cheap
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colorants or dyes for nonhuman products such as plastics or fabrics, and the colorant-free
biomass can be used for biofuels or even bioplastics production.

5. Conclusions

The results obtained in this research show the capacity of landfill leachate as a source
of nutrients to produce algal biomass with specific metabolites. In this case, both strains
were able to grow in media with up to 5% (v/v) leachate with a high concentration of
biomass and removal of 80% (w/w) of NO3, and 50% (w/w) of PO4. However, higher
levels of leachate (10% v/v) proved to be toxic for the strains. Regarding the carbon
source, the results show that Chlorella sp. and Scenedesmus sp were able to increase the final
concentration of biomass using both carbon sources, with sodium bicarbonate (NaHCO3)
being the carbon source that achieved the most significant increase in final biomass content
(up to 1.23 g·dm−3, with a control of 0.68 g·dm−3) in Chlorella sp. On the other hand, the
most significant production of metabolites such as carotenoids occurred when Na2CO3
was used in both strains at a concentration of 0.8 g·dm−3. In the case of lipids, NaHCO3 in
Scenedesmus sp obtained the highest values at 1.2 g·dm−3, while in Chlorella sp. Na2CO3
at 1.2 g·dm−3 achieved the highest lipid production. Also, the highest production was
observed for obtaining carbohydrates and proteins when using NaHCO3 at 1.2 g·dm−3.
For carbohydrates, both strains used NaHCO3 at that concentration, while for proteins,
only Scenedesmus sp. achieved the highest value.
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