1,626 research outputs found
Early application of solar electric propulsion to a 1-astronomical-unit out-of-the-ecliptic mission
Solar electric propulsion for out-of-ecliptic solar orbit missio
Development of a microelectronic module Final report
Feasibility of operating gallium arsenide devices in high temperature microelectronic circuit
Dicke quantum spin glass of atoms and photons
Recent studies of strongly interacting atoms and photons in optical cavities
have rekindled interest in the Dicke model of atomic qubits coupled to discrete
photon cavity modes. We study the multimode Dicke model with variable
atom-photon couplings. We argue that a quantum spin glass phase can appear,
with a random linear combination of the cavity modes superradiant. We compute
atomic and photon spectral response functions across this quantum phase
transition, both of which should be accessible in experiment.Comment: 4 pages, 3 figures, v2: described quantum optics set-up in more
detail; extended discussion on photon correlation functions and experimental
signatures; added reference
Ferromagnetism in Correlated Electron Systems: Generalization of Nagaoka's Theorem
Nagaoka's theorem on ferromagnetism in the Hubbard model with one electron
less than half filling is generalized to the case where all possible
nearest-neighbor Coulomb interactions (the density-density interaction ,
bond-charge interaction , exchange interaction , and hopping of double
occupancies ) are included. It is shown that for ferromagnetic exchange
coupling () ground states with maximum spin are stable already at finite
Hubbard interaction . For non-bipartite lattices this requires a hopping
amplitude . For vanishing one obtains as in
Nagaoka's theorem. This shows that the exchange interaction is important
for stabilizing ferromagnetism at finite . Only in the special case
the ferromagnetic state is stable even for , provided the lattice allows
the hole to move around loops.Comment: 13 pages, uuencoded postscript, includes 1 table and 2 figure
Comparison of Variational Approaches for the Exactly Solvable 1/r-Hubbard Chain
We study Hartree-Fock, Gutzwiller, Baeriswyl, and combined
Gutzwiller-Baeriswyl wave functions for the exactly solvable one-dimensional
-Hubbard model. We find that none of these variational wave functions is
able to correctly reproduce the physics of the metal-to-insulator transition
which occurs in the model for half-filled bands when the interaction strength
equals the bandwidth. The many-particle problem to calculate the variational
ground state energy for the Baeriswyl and combined Gutzwiller-Baeriswyl wave
function is exactly solved for the~-Hubbard model. The latter wave
function becomes exact both for small and large interaction strength, but it
incorrectly predicts the metal-to-insulator transition to happen at infinitely
strong interactions. We conclude that neither Hartree-Fock nor Jastrow-type
wave functions yield reliable predictions on zero temperature phase transitions
in low-dimensional, i.e., charge-spin separated systems.Comment: 23 pages + 3 figures available on request; LaTeX under REVTeX 3.
Determining ethylene group disorder levels in -(BEDT-TTF)Cu[N(CN)]Br
We present a detailed structural investigation of the organic superconductor
-(BEDT-TTF)Cu[N(CN)]Br at temperatures from 9 to 300 K.
Anomalies in the dependence of the lattice parameters are associated with a
glass-like transition previously reported at = 77 K. From structure
refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space
group {\it Pnma}, is established at all temperatures. Further, we extract the
dependence of the occupation factor of the eclipsed conformation of the
terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %,
with an increase to 97(3) % at 9 K. We conclude that the glass-like transition
is not primarily caused by configurational freezing-out of the ethylene groups
Hole motion in the Ising antiferromagnet: an application of the recursion method
We study hole motion in the Ising antiferromagnet using the recursion method.
Using the retraceable path approximation we find the hole's Green's function as
well as its wavefunction for arbitrary values of . The effect of small
transverse interaction also is taken into account. Our results provide some
additional insight into the self-consistent Born approximation.Comment: 8 pages, RevTex, no figures. Accepted for publication in Phys.Rev.
Manned Mars landing missions using electric propulsion
Manned Mars landing missions using electric propulsion - evaluation of various mission profile
Effects of Next-Nearest-Neighbor Hopping on the Hole Motion in an Antiferromagnetic Background
In this paper we study the effect of next-nearest-neighbor hopping on the
dynamics of a single hole in an antiferromagnetic (N\'{e}el) background. In the
framework of large dimensions the Green function of a hole can be obtained
exactly. The exact density of states of a hole is thus calculated in large
dimensions and on a Bethe lattice with large coordination number. We suggest a
physically motivated generalization to finite dimensions (e.g., 2 and 3). In
we present also the momentum dependent spectral function. With varying
degree, depending on the underlying lattice involved, the discrete spectrum for
holes is replaced by a continuum background and a few resonances at the low
energy end. The latter are the remanents of the bound states of the
model. Their behavior is still largely governed by the parameters and .
The continuum excitations are more sensitive to the energy scales and
.Comment: To appear in Phys. Rev. B, Revtex, 23 pages, 10 figures available on
request from [email protected]
Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation
We study the properties of Fermi Liquids with the microscopic constraint of a
local self-energy. In this case the forward scattering sum-rule imposes strong
limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek
instabilities. For both attractive and repulsive interactions, ferromagnetism
and phase separation are suppressed. Superconductivity is possible in an s-wave
channel only. We also study the approach to the metal-insulator transition, and
find a Wilson ratio approaching 2. This ratio and other properties of
Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty
latex style file -- Postscript files: fig1.ps and fig2.p
- …
