1,410 research outputs found

    Cluster growth in far-from-equilibrium particle models with diffusion, detachment, reattachment and deposition

    Full text link
    Monolayer cluster growth in far-from-equilibrium systems is investigated by applying simulation and analytic techniques to minimal hard core particle (exclusion) models. The first model (I), for post-deposition coarsening dynamics, contains mechanisms of diffusion, attachment, and slow activated detachment (at rate epsilon<<1) of particles on a line. Simulation shows three successive regimes of cluster growth: fast attachment of isolated particles; detachment allowing further (epsilon t)^(1/3) coarsening of average cluster size; and t^(-1/2) approach to a saturation size going like epsilon^(-1/2). Model II generalizes the first one in having an additional mechanism of particle deposition into cluster gaps, suppressed for the smallest gaps. This model exhibits early rapid filling, leading to slowing deposition due to the increasing scarcity of deposition sites, and then continued power law (epsilon t)^(1/2) cluster size coarsening through the redistribution allowed by slow detachment. The basic (epsilon t)^(1/3) domain growth laws and epsilon^(-1/2) saturation in model I are explained by a simple scaling picture. A second, fuller approach is presented which employs a mapping of cluster configurations to a column picture and an approximate factorization of the cluster configuration probability within the resulting master equation. This allows quantitative results for the saturation of model I in excellent agreement with the simulation results. For model II, it provides a one-variable scaling function solution for the coarsening probability distribution, and in particular quantitative agreement with the cluster length scaling and its amplitude.Comment: Accepted in Phys. Rev. E; 9 pages with figure

    Fluctuation-dissipation relation and the Edwards entropy for a glassy granular compaction model

    Full text link
    We analytically study a one dimensional compaction model in the glassy regime. Both correlation and response functions are calculated exactly in the evolving dense and low tapping strength limit, where the density relaxes in a 1/lnt1/\ln t fashion. The response and correlation functions turn out to be connected through a non-equilibrium generalisation of the fluctuation-dissipation theorem. The initial response in the average density to an increase in the tapping strength is shown to be negative, while on longer timescales it is shown to be positive. On short time scales the fluctuation-dissipation theorem governs the relation between correlation and response, and we show that such a relationship also exists for the slow degrees of freedom, albeit with a different temperature. The model is further studied within the statistical theory proposed by Edwards and co-workers, and the Edwards entropy is calculated in the large system limit. The fluctuations described by this approach turn out to match the fluctuations as calculated through the dynamical consideration. We believe this to be the first time these ideas have been analytically confirmed in a non-mean-field model.Comment: 4 pages, 3 figure

    Non-universal coarsening and universal distributions in far-from equilibrium systems

    Full text link
    Anomalous coarsening in far-from equilibrium one-dimensional systems is investigated by simulation and analytic techniques. The minimal hard core particle (exclusion) models contain mechanisms of aggregated particle diffusion, with rates epsilon<<1, particle deposition into cluster gaps, but suppressed for the smallest gaps, and breakup of clusters which are adjacent to large gaps. Cluster breakup rates vary with the cluster length x as kx^alpha. The domain growth law x ~ (epsilon t)^z, with z=1/(2+alpha) for alpha>0, is explained by a scaling picture, as well as the scaling of the density of double vacancies (at which deposition and cluster breakup are allowed) as 1/[t(epsilon t)^z]. Numerical simulations for several values of alpha and epsilon confirm these results. An approximate factorization of the cluster configuration probability is performed within the master equation resulting from the mapping to a column picture. The equation for a one-variable scaling function explains the above results. The probability distributions of cluster lengths scale as P(x)= 1/(epsilon t)^z g(y), with y=x/(epsilon t)^z. However, those distributions show a universal tail with the form g(y) ~ exp(-y^{3/2}), which disagrees with the prediction of the independent cluster approximation. This result is explained by the connection of the vacancy dynamics with the problem of particle trapping in an infinite sea of traps and is confirmed by simulation.Comment: 30 pages (10 figures included), to appear in Phys. Rev.

    Modeling one-dimensional island growth with mass-dependent detachment rates

    Full text link
    We study one-dimensional models of particle diffusion and attachment/detachment from islands where the detachment rates gamma(m) of particles at the cluster edges increase with cluster mass m. They are expected to mimic the effects of lattice mismatch with the substrate and/or long-range repulsive interactions that work against the formation of long islands. Short-range attraction is represented by an overall factor epsilon<<1 in the detachment rates relatively to isolated particle hopping rates [epsilon ~ exp(-E/T), with binding energy E and temperature T]. We consider various gamma(m), from rapidly increasing forms such as gamma(m) ~ m to slowly increasing ones, such as gamma(m) ~ [m/(m+1)]^b. A mapping onto a column problem shows that these systems are zero-range processes, whose steady states properties are exactly calculated under the assumption of independent column heights in the Master equation. Simulation provides island size distributions which confirm analytic reductions and are useful whenever the analytical tools cannot provide results in closed form. The shape of island size distributions can be changed from monomodal to monotonically decreasing by tuning the temperature or changing the particle density rho. Small values of the scaling variable X=epsilon^{-1}rho/(1-rho) favour the monotonically decreasing ones. However, for large X, rapidly increasing gamma(m) lead to distributions with peaks very close to and rapidly decreasing tails, while slowly increasing gamma(m) provide peaks close to /2$ and fat right tails.Comment: 16 pages, 6 figure

    A family of discrete-time exactly-solvable exclusion processes on a one-dimensional lattice

    Full text link
    A two-parameter family of discrete-time exactly-solvable exclusion processes on a one-dimensional lattice is introduced, which contains the asymmetric simple exclusion process and the drop-push model as particular cases. The process is rewritten in terms of boundary conditions, and the conditional probabilities are calculated using the Bethe-ansatz. This is the discrete-time version of the continuous-time processes already investigated in [1-3]. The drift- and diffusion-rates of the particles are also calculated for the two-particle sector.Comment: 10 page

    The Tails of the Crossing Probability

    Full text link
    The scaling of the tails of the probability of a system to percolate only in the horizontal direction πhs\pi_{hs} was investigated numerically for correlated site-bond percolation model for q=1,2,3,4q=1,2,3,4.We have to demonstrate that the tails of the crossing probability far from the critical point have shape πhs(p)Dexp(cL[ppc]ν)\pi_{hs}(p) \simeq D \exp(c L[p-p_{c}]^{\nu}) where ν\nu is the correlation length index, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed. At criticality we observe crossover to another scaling πhs(p)Aexp(bL[ppc]νz)\pi_{hs}(p) \simeq A \exp (-b {L [p-p_{c}]^{\nu}}^{z}). Here zz is a scaling index describing the central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical change

    Genética de la conservación para la recuperación de especies animales en peligro de extinción: revisión de los planes de recuperación de especies en peligro de extinción de Estados Unidos (1977–1998)

    Get PDF
    The utility of genetic data in conservation efforts, particularly in comparison to demographic information, is the subject of ongoing debate. Using a database of information surveyed from 181 US endangered and threatened species recovery plans, we addressed the following questions concerning the use of genetic information in animal recovery plans: I. What is the relative prominence of genetic vs. demographic data in recovery plan development? and, II. When are genetic factors viewed as a threat, and how do plans respond to genetic threats? In general, genetics appear to play a minor and relatively ill–defined part in the recovery planning process; demographic data are both more abundant and more requested in recovery plans, and tasks are more frequently assigned to the collection / monitoring of demographic rather than genetic information. Nonetheless, genetic threats to species persistence and recovery are identified in a substantial minority (22 %) of recovery plans, although there is little uniform response to these perceived threats in the form of specific proposed recovery or management tasks. Results indicate that better guidelines are needed to identify how and when genetic information is most useful for species recovery; we highlight specific contexts in which genetics may provide unique management information, beyond that provided by other kinds of data.La utilidad de los datos genéticos en los esfuerzos conservacionistas, en particular en comparación con la información demográfica, es objeto de un continuo debate. Utilizando una base de datos con información sobre los 181 planes de recuperación de especies amenazadas y en peligro de extinción de Estados Unidos, hemos estudiado las siguientes cuestiones referentes al uso de la información genética en los planes de recuperación de especies animales: I ¿Cuál es la importancia relativa de los datos genéticos en comparación con los demográficos en el desarrollo de los planes de recuperación? y II ¿Cuándo se considera que los factores genéticos constituyen una amenaza, y cómo responden los planes a esas amenazas genéticas? En general, parece que la genética sólo desempeña un papel menor y relativamente mal definido en el proceso de planificación de la recuperación de especies; los datos demográficos son más abundantes y más solicitados para la elaboración de planes de recuperación, y las acciones que se llevan a cabo con frecuencia se enfocan más a las recopilación/observación de los datos demográficos que a la obtención de información genética. No obstante, las amenazas genéticas para la supervivencia y recuperación de especies se indican como un importante factor minoritario (22 %) en los planes de recuperación, si bien la respuesta a esas amenazas mediante medidas de gestión o recuperación específicas es poco uniforme. Los resultados apuntan a que se necesitan unas directrices más claras para determinar cómo y cuándo resulta más útil la información genética para la recuperación de especies; hemos resaltado contextos concretos en los que la genética puede proporcionar una valiosísima fuente de información para la gestión de esas cuestiones, superior a la que se pueda obtener a partir de otros datos

    Exactly solvable interacting vertex models

    Full text link
    We introduce and solvev a special family of integrable interacting vertex models that generalizes the well known six-vertex model. In addition to the usual nearest-neighbor interactions among the vertices, there exist extra hard-core interactions among pair of vertices at larger distances.The associated row-to-row transfer matrices are diagonalized by using the recently introduced matrix product {\it ansatz}. Similarly as the relation of the six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices of these new models are also the generating functions of an infinite set of commuting conserved charges. Among these charges we identify the integrable generalization of the XXZ chain that contains hard-core exclusion interactions among the spins. These quantum chains already appeared in the literature. The present paper explains their integrability.Comment: 20 pages, 3 figure
    corecore