24 research outputs found

    Evaluating the Segment Anything Model for Histopathological Tissue Segmentation

    No full text

    Polygenic risk for coronary artery disease in the Scottish and English population.

    No full text
    BACKGROUND: Epidemiological studies have repeatedly observed a markedly higher risk for coronary artery disease (CAD) in Scotland as compared to England. Up to now, it is unclear whether environmental or genetic factors might explain this phenomenon. METHODS: Using UK Biobank (UKB) data, we assessed CAD risk, based on the Framingham risk score (FRS) and common genetic variants, to explore the respective contribution to CAD prevalence in Scotland (n = 31,963) and England (n = 317,889). We calculated FRS based on sex, age, body mass index (BMI), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), antihypertensive medication, smoking status, and diabetes. We determined the allele frequency of published genome-wide significant risk CAD alleles and a weighted genetic risk score (wGRS) for quantifying genetic CAD risk. RESULTS: Prevalence of CAD was 16% higher in Scotland as compared to England (8.98% vs. 7.68%, P < 0.001). However, the FRS only predicted a marginally higher CAD risk (less than 1%) in Scotland (12.5 ± 10.5 vs.12.6 ± 10.6, P = 0.03). Likewise, the overall number of genome-wide significant variants affecting CAD risk (157.6 ± 7.7 and 157.5 ± 7.7; P = 0.12) and a wGRS for CAD (2.49 ± 0.25 in both populations, P = 0.14) were remarkably similar in the English and Scottish population. Interestingly, we observed substantial differences in the allele frequencies of individual risk variants. Of the previously described 163 genome-wide significant variants studied here, 35 variants had higher frequencies in Scotland, whereas 37 had higher frequencies in England (P < 0.001 each). CONCLUSIONS: Neither the traditional risk factors included in the FRS nor a genetic risk score (GRS) based on established common risk alleles explained the higher CAD prevalence in Scotland. However, we observed marked differences in the distribution of individual risk alleles, which emphasizes that even geographically and ethnically closely related populations may display relevant differences in the genetic architecture of a common disease

    Glioblastoma relapses show increased markers of vulnerability to ferroptosis.

    No full text
    Background: Despite the availability of various therapy options and being a widely focused research area, the prognosis of glioblastoma (GBM) still remains very poor due to therapy resistance, genetic heterogeneity and a diffuse infiltration pattern. The recently described non-apoptotic form of cell death ferroptosis may, however, offer novel opportunities for targeted therapies. Hence, the aim of this study was to investigate the potential role of ferroptosis in GBM, including the impact of treatment on the expression of the two ferroptosis-associated players glutathione-peroxidase 4 (GPX4) and acyl-CoA-synthetase long-chain family number 4 (ACSL4). Furthermore, the change in expression of the recently identified ferroptosis suppressor protein 1 (FSP1) and aldehyde dehydrogenase (ALDH) 1A3 was investigated. Methods: Immunohistochemistry was performed on sample pairs of primary and relapse GBM of 24 patients who had received standard adjuvant treatment with radiochemotherapy. To identify cell types generally prone to undergo ferroptosis, co-stainings of ferroptosis susceptibility genes in combination with cell-type specific markers including glial fibrillary acidic protein (GFAP) for tumor cells and astrocytes, as well as the ionized calcium-binding adapter molecule 1 (Iba1) for microglial cells were performed, supplemented by double stains combining GPX4 and ACSL4. Results: While the expression of GPX4 decreased significantly during tumor relapse, ACSL4 showed a significant increase. These results were confirmed by analyses of data sets of the Cancer Genome Atlas. These profound changes indicate an increased susceptibility of relapsed tumors towards oxidative stress and associated ferroptosis, a cell death modality characterized by unrestrained lipid peroxidation. Moreover, ALDH1A3 and FSP1 expression also increased in the relapses with significant results for ALDH1A3, whereas for FSP1, statistical significance was not reached. Results obtained from double staining imply that ferroptosis occurs more likely in GBM tumor cells than in microglial cells. Conclusion: Our study implies that ferroptosis takes place in GBM tumor cells. Moreover, we show that recurrent tumors have a higher vulnerability to ferroptosis. These results affirm that utilizing ferroptosis processes might be a possible novel therapy option, especially in the situation of recurrent GBM

    Biochemical and structural insights into Carbonic Anhydrase XII/Fab6A10 complex.

    No full text
    6A10 is a CA XII inhibitory monoclonal antibody, which was demonstrated to reduce the growth of cancer cells in vitro and in a xenograft model of lung cancer. It was also shown to enhance chemosensitivity of multiresistant cancer cell lines and to significantly reduce the number of lung metastases in combination with doxorubicin in mice carrying human triple-negative breast cancer xenografts. Starting from these data, we report here on the development of the 6A10 antigen-binding fragment (Fab), termed Fab6A10, and its functional, biochemical, and structural characterization. In vitro binding and inhibition assays demonstrated that Fab6A10 selectively binds and inhibits CA XII, whereas immunohistochemistry experiments highlighted its capability to stain malignant glioma cells in contrast to the surrounding brain tissue. Finally, the crystallographic structure of CA XII/Fab6A10 complex provided insights into the inhibition mechanism of Fab6A10, showing that upon binding, it obstructs the substrate access to the enzyme active site and interacts with CA XII His64 freezing it in its out conformation. Altogether, these data indicate Fab6A10 as a new promising therapeutic tool against cancer

    The intratumoral heterogeneity reflects the intertumoral subtypes of glioblastoma multiforme: A regional immunohistochemistry analysis.

    No full text
    Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor in adults. Despite extensive therapy the prognosis for GBM patients remains poor and the extraordinary therapy resistance has been attributed to intertumoral heterogeneity of glioblastoma. Different prognostic relevant GBM tumor subtypes have been identified based on their molecular profile. This approach, however, neglects the heterogeneity within individual tumors, that is, the intratumoral heterogeneity. Here, we detected the regional immunoreactivity by immunohistochemistry and immunofluorescence using nine different markers on resected GBM specimens (IDH wildtype, WHO grade IV). We found repetitive expression profiles, that could be classified into clusters. These clusters could then be assigned to five pathophysiologically relevant groups that reflect the previously described subclasses of GBM, including mesenchymal, classical, and proneural subtype. Our data indicate the presence of tumor differentiations and tumor subclasses that occur within individual tumors, and might therefore contribute to develop adapted, individual-based therapies

    Predicting glioblastoma recurrence from preoperative MR scans using fractional-anisotropy maps with free-water suppression.

    No full text
    Diffusion tensor imaging (DTI), and fractional-anisotropy (FA) maps in particular, have shown promise in predicting areas of tumor recurrence in glioblastoma. However, analysis of peritumoral edema, where most recurrences occur, is impeded by free-water contamination. In this study, we evaluated the benefits of a novel, deep-learning-based approach for the free-water correction (FWC) of DTI data for prediction of later recurrence. We investigated 35 glioblastoma cases from our prospective glioma cohort. A preoperative MR image and the first MR scan showing tumor recurrence were semiautomatically segmented into areas of contrast-enhancing tumor, edema, or recurrence of the tumor. The 10th, 50th and 90th percentiles and mean of FA and mean-diffusivity (MD) values (both for the original and FWC-DTI data) were collected for areas with and without recurrence in the peritumoral edema. We found significant differences in the FWC-FA maps between areas of recurrence-free edema and areas with later tumor recurrence, where differences in noncorrected FA maps were less pronounced. Consequently, a generalized mixed-effect model had a significantly higher area under the curve when using FWC-FA maps (AUC = 0.9) compared to noncorrected maps (AUC = 0.77, p < 0.001). This may reflect tumor infiltration that is not visible in conventional imaging, and may therefore reveal important information for personalized treatment decisions
    corecore