83 research outputs found

    cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner

    Get PDF
    cAMP-dependent protein kinase A (PKA) is a ubiquitously expressed serine/threonine kinase that regulates a variety of cellular functions. Here, we demonstrate that endothelial PKA activity is essential for vascular development, specifically regulating the transition from sprouting to stabilization of nascent vessels. Inhibition of endothelial PKA by endothelial cell-specific expression of dominant-negative PKA in mice led to perturbed vascular development, hemorrhage and embryonic lethality at mid-gestation. During perinatal retinal angiogenesis, inhibition of PKA resulted in hypersprouting as a result of increased numbers of tip cells. In zebrafish, cell autonomous PKA inhibition also increased and sustained endothelial cell motility, driving cells to become tip cells. Although these effects of PKA inhibition were highly reminiscent of Notch inhibition effects, our data demonstrate that PKA and Notch independently regulate tip and stalk cell formation and behavior

    Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1

    Get PDF
    The cAMP-dependent protein kinase A (PKA) regulates various cellular functions in health and disease. In endothelial cells PKA activity promotes vessel maturation and limits tip cell formation. Here, we used a chemical genetic screen to identify endothelial-specific direct substrates of PKA in human umbilical vein endothelial cells (HUVEC) that may mediate these effects. Amongst several candidates, we identified ATG16L1, a regulator of autophagy, as novel target of PKA. Biochemical validation, mass spectrometry and peptide spot arrays revealed that PKA phosphorylates ATG16L1α at Ser268 and ATG16L1β at Ser269, driving phosphorylation-dependent degradation of ATG16L1 protein. Reducing PKA activity increased ATG16L1 protein levels and endothelial autophagy. Mouse in vivo genetics and pharmacological experiments demonstrated that autophagy inhibition partially rescues vascular hypersprouting caused by PKA deficiency. Together these results indicate that endothelial PKA activity mediates a critical switch from active sprouting to quiescence in part through phosphorylation of ATG16L1, which in turn reduces endothelial autophagy

    Testimony on Pennsylvania SB1306: No Additional Protections for Religious Freedom

    Get PDF
    On behalf of the Public Rights/Private Conscience Project (PRPCP) at Columbia Law School I offer the following legal analysis of Senate Bill 1306. Overall, the current version of the bill promises to modernize Pennsylvania’s Human Relations Act by expanding antidiscrimination protections in employment to include sexual orientation and gender identity-based discrimination. Were the Pennsylvania legislature to pass SB 1306, the Commonwealth would join twenty-two states that include sexual orientation and nineteen states that include gender identity in their laws assuring equal employment opportunities for their citizens

    Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth

    Get PDF
    Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences

    Vascular and liver homeostasis in juvenile mice require endothelial cyclic AMP-dependent protein kinase A

    Get PDF
    During vascular development, endothelial cAMP-dependent protein kinase A (PKA) regulates angiogenesis by controlling the number of tip cells, and PKA inhibition leads to excessive angiogenesis. Whether this role of endothelial PKA is restricted to embryonic and neonatal development or is also required for vascular homeostasis later on is unknown. Here, we show that perinatal (postnatal days P1-P3) of later (P28-P32) inhibition of endothelial PKA using dominant-negative PKA expressed under the control of endothelial-specific Cdh5-CreERT2 recombinase (dnPKA(iEC) mice) leads to severe subcutaneous edema, hypoalbuminemia, hypoglycemia and premature death. These changes were accompanied by the local hypersprouting of blood vessels in fat pads and the secondary enlargement of subcutaneous lymphatic vessels. Most noticeably, endothelial PKA inhibition caused a dramatic disorganization of the liver vasculature. Hepatic changes correlated with decreased gluconeogenesis, while liver albumin production seems to be unaffected and hypoalbuminemia is rather a result of increased leakage into the interstitium. Interestingly, the expression of dnPKA only in lymphatics using Prox1-CreERT2 produced no phenotype. Likewise, the mosaic expression in only endothelial subpopulations using Vegfr3-CreERT2 was insufficient to induce edema or hypoglycemia. Increased expression of the tip cell marker ESM1 indicated that the inhibition of PKA induced an angiogenic response in the liver, although tissue derived pro- and anti-angiogenic factors were unchanged. These data indicate that endothelial PKA is a gatekeeper of endothelial cell activation not only in development but also in adult homeostasis, preventing the aberrant reactivation of the angiogenic program

    Emerging single cell endothelial heterogeneity supports sprouting tumour angiogenesis and growth

    Get PDF
    Blood vessels supplying tumors are often dysfunctional and generally heterogeneous. The mechanisms underlying this heterogeneity remain poorly understood. Here, using multicolor lineage tracing, in vivo time-lapse imaging and single cell RNA sequencing in a mouse glioma model, we identify tumour-specific blood endothelial cells that originate from cells expressing the receptor for colony stimulating factor 1, Csf1r, a cytokine which controls macrophage biology. These Csf1r lineage endothelial cells (CLECs) form up to 10% of the tumour vasculature and express, besides classical blood endothelial cell markers, a gene signature that is distinct from brain endothelium but shares similarities with lymphatic endothelial cell populations. in silico analysis of pan-cancer single cell RNAseq datasets highlights the presence of a comparable subpopulation in the endothelium of a wide spectrum of human tumours. We show that CLECs actively contribute to sprouting and remodeling of tumour blood vessels and that selective depletion of CLECs reduces vascular branching and tumour growth. Our findings indicate that a non-tumour resident Csf1r-positive population is recruited to tumours, differentiates into blood endothelial cells to contribute to vascularization and, thereby, tumour growth

    Prevalencia de leptospirosis en caprinos de la provincia de San Juan, Argentina

    Get PDF
    La leptospirosis, es una enfermedad bacteriana que infecta animales domésticos, silvestres y al ser humano. El objetivo de este trabajo fue investigar la prevalencia de leptospirosis en cabras en la provincia de San Juan, Argentina. Se muestrearon 10 establecimientos productivos de las localidad de Jáchal de la Provincia de San Juan, Argentina. Sobre un total de 588 se extrajeron muestras de sangre al 17 % de la población caprina de cada uno de los establecimientos visitados. La cantidad de animales muestreados fue de 105 caprinos. De los 10 establecimientos estudiados, se observó que en el 70 % de los mismos presentaron animales sero reactantes y que 25 (23,8 %) caprinos tuvieron resultados que mostraron reactividad serológica a Leptospirosis. Se sabe que las cabras son menos susceptibles a la infección por leptospiras que los bovinos, sin embargo la serovariedad pomona, ha sido de las más frecuentemente relacionadas con la infección en cabras en distintos países; en nuestro estudio de los caprinos reaccionantes el 64 % correspondió a esta serovariedad, hallándose también los título más altos. Si bien la prueba de Aglutinación Microscópica no es determinante de serovar responsable de los brotes, es indicativo de la coincidencia con otros trabajos. Este trabajo permite resaltar la posible importancia de esta enfermedad en caprinos de San Juan, siendo probable que pasen desapercibidos sus signos clínicos.Facultad de Ciencias Veterinaria

    A Standardized Morpho-Functional Classification of the Planet’s Humipedons

    Get PDF
    It was time to take stock. We modified the humipedon classification key published in 2018 to make it easier and more practical. This morpho-functional taxonomy of the topsoil (humipedon) was only available in English; we also translated it into French and Italian. A standardized morphofunctional classification of humipedons (roughly the top 30–40 cm of soil: organic and organomineral surface horizons) would allow for a better understanding of the functioning of the soil ecosystem. This paper provides the founding principles of the classification of humipedon into humus systems and forms. With the recognition of a few diagnostic horizons, all humus systems can be determined. The humus forms that make up these humus systems are revealed by measuring the thicknesses of the diagnostic horizons. In the final part of the article, several figures represent the screenshots of a mobile phone or tablet application that allows for a fast recall of the diagnostic elements of the classification in the field. The article attempts to promote a standardized classification of humipedons for a global and shared management of soil at planet level
    • …
    corecore