722 research outputs found
Electron bombardment cesium ion engine system quarterly report, 3 may - 31 jul. 1965
Electron bombardment cesium ion engine - research and developmen
Minimum and maximum entropy distributions for binary systems with known means and pairwise correlations
Maximum entropy models are increasingly being used to describe the collective
activity of neural populations with measured mean neural activities and
pairwise correlations, but the full space of probability distributions
consistent with these constraints has not been explored. We provide upper and
lower bounds on the entropy for the {\em minimum} entropy distribution over
arbitrarily large collections of binary units with any fixed set of mean values
and pairwise correlations. We also construct specific low-entropy distributions
for several relevant cases. Surprisingly, the minimum entropy solution has
entropy scaling logarithmically with system size for any set of first- and
second-order statistics consistent with arbitrarily large systems. We further
demonstrate that some sets of these low-order statistics can only be realized
by small systems. Our results show how only small amounts of randomness are
needed to mimic low-order statistical properties of highly entropic
distributions, and we discuss some applications for engineered and biological
information transmission systems.Comment: 34 pages, 7 figure
Ion rocket system research and development Final report, 24 Feb. 1964 - 25 Jun. 1965
Design studies and testing of ion rocket engine and zero gravity feed syste
Mantle redox state drives outgassing chemistry and atmospheric composition of rocky planets
Volcanic degassing of planetary interiors has important implications for their corresponding atmospheres. The oxidation state of rocky interiors affects the volatile partitioning during mantle melting and subsequent volatile speciation near the surface. Here we show that the mantle redox state is central to the chemical composition of atmospheres while factors such as planetary mass, thermal state, and age mainly affect the degassing rate. We further demonstrate that mantle oxygen fugacity has an effect on atmospheric thickness and that volcanic degassing is most efficient for planets between 2 and 4 Earth masses. We show that outgassing of reduced systems is dominated by strongly reduced gases such as H2, with only smaller fractions of moderately reduced/oxidised gases (CO, H2O). Overall, a reducing scenario leads to a lower atmospheric pressure at the surface and to a larger atmospheric thickness compared to an oxidised system. Atmosphere predictions based on interior redox scenarios can be compared to observations of atmospheres of rocky exoplanets, potentially broadening our knowledge on the diversity of exoplanetary redox states
Surface albedo changes with time on Titan’s possible cryovolcanic sites: Cassini/VIMS processing and geophysical implications
We present a study on Titan’s possibly cryovolcanic and varying regions as suggested from previous studies [e.g. 1;2;7]. These regions, which are potentially subject to change over time in brightness and are located close to the equator, are Tui Regio, Hotei Regio, and Sotra Patera. We apply two methods on Cassini/VIMS data in order to retrieve their surface properties and monitor any temporal variations. First, we apply a statistical method, the Principal Component Analysis (PCA) [3;4] where we manage to isolate regions of distinct and diverse chemical composition called ‘Region of interest – RoI’. Then, we focus on retrieving the spectral differences (with respect to the Huygens landing site albedo) among the RoIs by applying a radiative transfer code (RT) [5;3]. Hence, we are able to view the dynamical range and evaluate the differences in surface albedo within the RoIs of the three regions. In addition, using this double procedure, we study the temporal surface variations of the three regions witnessing albedo changes with time for Tui Regio from 2005-2009 (darkening) and Sotra Patera from 2005-2006 (brightening) at all wavelengths [3]. The surface albedo variations and the presence of volcanic-like features within the regions in addition to a recent study [6] that calculates Titan's tidal response are significant indications for the connection of the interior with the cryovolcanic candidate features with implications for the satellite’s astrobiological potential
- …