654 research outputs found
Does the bonding rule break down in AsSe glass?
The local coordination numbers of AsSe glass were determined by a
combination of anomalous x-ray scattering experiments, reverse Monte Carlo
calculations, and {\it ab initio} molecular dynamics simulations. The
well-known `8- bonding rule' proposed by Mott breaks down around the As
atoms, exceeding the rule by 7--26%. An experimental prediction based on
mean-field theory agrees with the present experimental and theoretical results.
The fourfold coordinated As atoms likely form As-As wrong bond chains rather
than ethan-like configurations, which is identified as the origin for the
breakdown of the `8- bonding rule'.Comment: 6 pages, 6figures, 1table, submitted to Europhysics Letter
Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli
In our earlier study dealing with the analysis of neuromagnetic responses
(magnetoencephalograms - MEG) to flickering-color stimuli for a group of
control human subjects (9 volunteers) and a patient with photosensitive
epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy
(FNS) was able to identify specific differences in the responses of each
organism. The high specificity of individual MEG responses manifested itself in
the values of FNS parameters for both chaotic and resonant components of the
original signal. The present study applies the FNS cross-correlation function
to the analysis of correlations between the MEG responses simultaneously
measured at spatially separated points of the human cortex processing the
red-blue flickering color stimulus. It is shown that the cross-correlations for
control (healthy) subjects are characterized by frequency and phase
synchronization at different points of the cortex, with the dynamics of
neuromagnetic responses being determined by the low-frequency processes that
correspond to normal physiological rhythms. But for the patient, the frequency
and phase synchronization breaks down, which is associated with the suppression
of cortical regulatory functions when the flickering-color stimulus is applied,
and higher frequencies start playing the dominating role. This suggests that
the disruption of correlations in the MEG responses is the indicator of
pathological changes leading to photosensitive epilepsy, which can be used for
developing a method of diagnosing the disease based on the analysis with the
FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2
Ab initio Tight-Binding Molecular Dynamics Simulation of Hydrogen Adsorption on Graphite Surface
Thermo-mechanic-electrical coupling in phospholipid monolayers near the critical point
Lipid monolayers have been shown to represent a powerful tool in studying
mechanical and thermodynamic properties of lipid membranes as well as their
interaction with proteins. Using Einstein's theory of fluctuations we here
demonstrate, that an experimentally derived linear relationship both between
transition entropy S and area A as well as between transition entropy and
charge q implies a linear relationships between compressibility \kappa_T, heat
capacity c_\pi, thermal expansion coefficient \alpha_T and electric capacity
CT. We demonstrate that these couplings have strong predictive power as they
allow calculating electrical and thermal properties from mechanical
measurements. The precision of the prediction increases as the critical point
TC is approached
Automatic detection of limb prominences in 304 A EUV images
A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a
classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community
Enhancement of the upper critical field and a field-induced superconductivity in antiferromagnetic conductors
We propose a mechanism by which the paramagnetic pair-breaking effect is
largely reduced in superconductors with coexisting antiferromagnetic long-
range and short-range orders. The mechanism is an extension of the Jaccarino
and Peter mechanism to antiferromagnetic conductors, but the resultant phase
diagram is quite different. In order to illustrate the mechanism, we examine a
model which consists of mobile electrons and antiferromagnetically correlated
localized spins with Kondo coupling between them. It is found that for weak
Kondo coupling, the superconductivity occurs over an extraordinarily wide
region of the magnetic field including zero field. The critical field exceeds
the Chandrasekhar and Clogston limit, but there is no lower limit in contrast
to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo
coupling, both the low-field superconductivity and a field-induced
superconductivity occur. Possibilities in hybrid ruthenate cuprate
superconductors and some organic superconductors are discussed.Comment: 5 pages, 1 figure, revtex.sty, to be published in J.Phys.Soc.Jpn.
Vol.71, No.3 (2002
Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface x-ray scattering
X-ray scattering is one of the primary tools to determine crystallographic
configuration with atomic accuracy. However, the measurement of ultrafast
structural dynamics in monolayer crystals remains a long-standing challenge due
to a significant reduction of diffraction volume and complexity of data
analysis, prohibiting the application of ultrafast x-ray scattering to study
nonequilibrium structural properties at the two-dimensional limit. Here, we
demonstrate femtosecond surface x-ray diffraction in combination with
crystallographic model-refinement calculations to quantify the ultrafast
structural dynamics of monolayer WSe crystals supported on a substrate. We
found the absorbed optical photon energy is preferably coupled to the in-plane
lattice vibrations within 2 picoseconds while the out-of-plane lattice
vibration amplitude remains unchanged during the first 10 picoseconds. The
model-assisted fitting suggests an asymmetric intralayer spacing change upon
excitation. The observed nonequilibrium anisotropic structural dynamics in
two-dimensional materials agrees with first-principles nonadiabatic modeling in
both real and momentum space, marking the distinct structural dynamics of
monolayer crystals from their bulk counterparts. The demonstrated methods
unlock the benefit of surface sensitive x-ray scattering to quantitatively
measure ultrafast structural dynamics in atomically thin materials and across
interfaces
Structure Factor and Electronic Structure of Compressed Liquid Rubidium
We have applied the quantal hypernetted-chain equations in combination with
the Rosenfeld bridge-functional to calculate the atomic and the electronic
structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and
6.1 GPa); the calculated structure factors are in good agreement with
experimental results measured by Tsuji et al. along the melting curve. We found
that the Rb-pseudoatom remains under these high pressures almost unchanged with
respect to the pseudoatom at room pressure; thus, the effective ion-ion
interaction is practically the same for all pressure-values. We observe that
all structure factors calculated for this pressure-variation coincide almost
into a single curve if wavenumbers are scaled in units of the Wigner-Seitz
radius although no corresponding scaling feature is observed in the
effective ion-ion interaction.This scaling property of the structure factors
signifies that the compression in liquid-rubidium is uniform with increasing
pressure; in absolute Q-values this means that the first peak-position ()
of the structure factor increases proportionally to ( being the
specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure
Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study
The static and dynamic structure of liquid Al is studied using the orbital
free ab-initio molecular dynamics method. Two thermodynamic states along the
coexistence line are considered, namely T = 943 K and 1323 K for which X-ray
and neutron scattering data are available. A new kinetic energy functional,
which fulfills a number of physically relevant conditions is employed, along
with a local first principles pseudopotential. In addition to a comparison with
experiment, we also compare our ab-initio results with those obtained from
conventional molecular dynamics simulations using effective interionic pair
potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR
- …
