47 research outputs found
A New Look at Familial Risk of Inflammatory Bowel Disease in the Ashkenazi Jewish Population
Background and Aims: The inflammatory bowel diseases (IBD) are particularly common among the Ashkenazi Jewish (AJ) population. Population-specific estimates of familial risk are important for counseling; however, relatively small cohorts of AJ IBD patients have been analyzed for familial risk to date. This study aimed to recruit a new cohort of AJ IBD patients, mainly from the UK, to determine the familial occurrence of disease. / Methods: A total of 864 AJ IBD patients were recruited through advertisements, hospital clinics, and primary care. Participants were interviewed about their Jewish ancestry, disease phenotype, age of diagnosis, and family history of disease. Case notes were reviewed. / Results: The 864 probands comprised 506 sporadic and 358 familial cases, the latter with a total of 625 affected relatives. Of the UK cases, 40% had a positive family history with 25% having at least one affected first-degree relative. These percentages were lower among those recruited through hospital clinics and primary care (33% for all relatives and 22% among first-degree relatives). Examining all probands, the relative risk of IBD for offspring, siblings, and parents was 10.5, 7.4, and 4, respectively. Age of diagnosis was significantly lower in familial versus sporadic patients with Crohn’s disease. / Conclusions: This study reports familial risk estimates for a significant proportion of the AJ IBD population in the UK. The high rate of a positive family history in this cohort may reflect the greater genetic burden for IBD among AJs. These data are of value in predicting the likelihood of future recurrence of IBD in AJ families
The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice
Aims/hypothesis Mitochondrial oxidative metabolism is central to glucose-stimulated insulin secretion (GSIS). Whether Ca2+ uptake into pancreatic beta cell mitochondria potentiates or antagonises this process is still a matter of debate. Although the mitochondrial Ca2+ importer (MCU) complex is thought to represent the main route for Ca2+ transport across the inner mitochondrial membrane, its role in beta cells has not previously been examined in vivo. Methods Here, we inactivated the pore-forming subunit of the MCU, encoded by Mcu, selectively in mouse beta cells using Ins1Cre-mediated recombination. Whole or dissociated pancreatic islets were isolated and used for live beta cell fluorescence imaging of cytosolic or mitochondrial Ca2+ concentration and ATP production in response to increasing glucose concentrations. Electrophysiological recordings were also performed on whole islets. Serum and blood samples were collected to examine oral and i.p. glucose tolerance. Results Glucose-stimulated mitochondrial Ca2+ accumulation (p< 0.05), ATP production (p< 0.05) and insulin secretion (p< 0.01) were strongly inhibited in beta cell-specific Mcu-null (βMcu-KO) animals, in vitro, as compared with wild-type (WT) mice. Interestingly, cytosolic Ca2+ concentrations increased (p< 0.001), whereas mitochondrial membrane depolarisation improved in βMcu-KO animals. βMcu-KO mice displayed impaired in vivo insulin secretion at 5 min (p< 0.001) but not 15 min post-i.p. injection of glucose, whilst the opposite phenomenon was observed following an oral gavage at 5 min. Unexpectedly, glucose tolerance was improved (p< 0.05) in young βMcu-KO (<12 weeks), but not in older animals vs WT mice. Conclusions/interpretation MCU is crucial for mitochondrial Ca2+ uptake in pancreatic beta cells and is required for normal GSIS. The apparent compensatory mechanisms that maintain glucose tolerance in βMcu-KO mice remain to be established
Rare coding variant analysis in a large cohort of Ashkenazi Jewish families with inflammatory bowel disease
Rare variants are thought to contribute to the genetics of inflammatory bowel disease (IBD), which is more common amongst the Ashkenazi Jewish (AJ) population. A family-based approach using exome sequencing of AJ individuals with IBD was employed with a view to identify novel rare genetic variants for this disease. Exome sequencing was performed on 960 Jewish individuals including 513 from 199 multiplex families with up to eight cases. Rare, damaging variants in loci prioritized by linkage analysis and those shared by multiple affected individuals within the same family were identified. Independent evidence of association of each variant with disease was assessed. A number of candidate variants were identified, including in genes involved in the immune system. The ability to achieve statistical significance in independent case/control replication data was limited by power and was only achieved for variants in the well-established Crohn's disease gene, NOD2. This work demonstrates the challenges of identifying disease-associated rare damaging variants from exome data, even amongst a favorable cohort of familial cases from a genetic isolate. Further research of the prioritized rare candidate variants is required to confirm their association with the disease
ADCY5 couples glucose to insulin secretion in human islets
Single nucleotide polymorphisms (SNPs) within the ADCY5 gene, encoding adenylate cyclase 5, are associated with elevated fasting glucose and increased type 2 diabetes (T2D) risk. Despite this, the mechanisms underlying the effects of these polymorphic variants at the level of pancreatic β-cells remain unclear. Here, we show firstly that ADCY5 mRNA expression in islets is lowered by the possession of risk alleles at rs11708067. Next, we demonstrate that ADCY5 is indispensable for coupling glucose, but not GLP-1, to insulin secretion in human islets. Assessed by in situ imaging of recombinant probes, ADCY5 silencing impaired glucose-induced cAMP increases and blocked glucose metabolism toward ATP at concentrations of the sugar >8 mmol/L. However, calcium transient generation and functional connectivity between individual human β-cells were sharply inhibited at all glucose concentrations tested, implying additional, metabolism-independent roles for ADCY5. In contrast, calcium rises were unaffected in ADCY5-depleted islets exposed to GLP-1. Alterations in β-cell ADCY5 expression and impaired glucose signaling thus provide a likely route through which ADCY5 gene polymorphisms influence fasting glucose levels and T2D risk, while exerting more minor effects on incretin action
The frontier of social impact finance in the public sector: Theory and two case studies
Social impact bonds (SIBs) are a novel and innovative form of public-private partnership financing social services performed by a best-practice selected non-governmental third entity. In our paper we outline a SIB theoretical model identifying government and private investors' participation constraints and we discuss the conflicts of interests that may arise among the different actors involved in presence of asymmetric information. We apply our theoretical model to two investment cases concerning contrast to jail recidivism and health budget project. We show conditions for viability of the SIB scheme in both cases under reasonable parametric conditions, provide sensitivity analysis on crucial parameters, and calculate participants' payoffs under different assumptions
Going Deeper into the S of ESG: A Relational Approach to the Definition of Social Responsibility
ESG frameworks have progressively become central in economic and policy choices. This is why it is of utmost importance to build a shared and accepted framework to define what we really mean by ESG overcoming the "minimalist" Do Not Significantly Harm (DNSH) principle and moving toward the full achievement of the more ambitious substantial contribution (SC) principle, oriented to the maximization of the social and environmental impact of value creation. To move forward in this direction, our work proposes a relational approach for the assessment of ESG factors focusing in particular on the social pillar. Our conceptual and theoretical proposal argues that, in order to increase the value of that pillar, it is necessary to assess both the internal and external relationships of the firm from an impact perspective, improving at the same time the multidimensional well-being of workers and the capacity to create sustainable development in the local community. The main factors companies should consider to achieve these goals are related to the domains of sense of community, empowerment, good practices of mutual aid and degree of participation at individual, team, organization, and territorial levels that can trigger gift giving, reciprocity and trust, overcoming standard social dilemmas and producing superadditive outcomes together with high social and environmental impact. Starting from these elements, this work proposes a set of indicators and metrics, based on an original methodology to measure and assess the commitment of a firm to increasing social factors. This methodology is particularly suitable for SMEs and start-up companies
CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances -beta-catenin degradation.
Protein kinase CK2 is a ubiquitous and pleiotropic Ser/Thr protein kinase involved in cell growth and transformation. Here we report the identification by yeast interaction trap of a CK2 interacting protein, UBC3B, which is highly homologous to the E2 ubiquitin conjugating enzyme UBC3/CDC34. UBC3B complements the yeast cdc34-2 cell cycle arrest mutant in S. cerevisiae and transfers ubiquitin to a target substrate in vitro. UBC3B is specifically phosphorylated by CK2 in vitro and in vivo. We mapped by deletions and site directed mutagenesis the phosphorylation site to a serine residue within the C-terminal domain in position 233 of UBC3B and in the corresponding serine residue of UBC3. Following CK2-dependent phosphorylation both UBC3B and UBC3 bind to the F-box protein beta-TrCP, the substrate recognition subunit of an SCF (Skp1, Cul1, F-box) ubiquitin ligase. Furthermore, we observed that co-transfection of CK2alpha' together with UBC3B, but not with UBC3DeltaC, enhances the degradation of beta-catenin. Taken together these data suggest that CK2-dependent phosphorylation of UBC3 and UBC3B functions by regulating beta-TrCP substrate recognition
Bitter taste receptors expression in human granulosa and cumulus cells: New perspectives in female fertility
Bitter taste receptors (TAS2RS) expression is not restricted to the oral cavity and the presence of these receptors in the male reproductive system and sperm provides insights into their possible role in human reproduction. To elucidate the potential role of TAS2Rs in the female reproductive system, we investigated the expression and localization of bitter taste receptors and the components of signal transduction cascade involved in the pathway of taste receptors in somatic follicular cells obtained from women undergoing assisted reproductive techniques. We found that TAS2R genes are expressed in both cumulus (CCs) and granulosa (GCs) cells, with TAS2R14 being the most highly expressed bitter receptor subtype. Interestingly, a slight increase in the expression of TAS2R14 and TAS2R43 was shown in both GCs and CCs in young women (p < 0.05), while a negative correlation may be established between the number of oocytes collected at the pickup and the expression of TAS2R43. Regarding α-gustducin and α-transducin, two Gα subunits expressed in the taste buds on the tongue, we provide evidence for their expression in CCs and GCs, with α-gustducin showing two additional isoforms in GCs. Finally, we shed light on the possible downstream transduction pathway initiated by taste receptor activation in the female reproductive system. Our study, showing for the first time the expression of taste receptors in the somatic ovarian follicle cells, significantly extends the current knowledge of the biological role of TAS2Rs for human female fertility
Protein kinase CK2a' is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation.
Protein kinase CK2 is an ubiquitous and pleiotropic Ser/Thr protein kinase composed of two catalytic (α and/or α′) and two noncatalytic (β) subunits forming a heterotetrameric holoenzyme involved in cell growth and differentiation. Here we report the identification, cloning, and oncogenic activity of the murine CK2α′ subunit. Serum treatment of quiescent mouse fibroblasts induces CK2α′ mRNA expression, which peaks at 4 h. The kinetics ofCK2α′ expression correlate with increased kinase activity toward a specific CK2 holoenzyme peptide substrate. The ectopic expression of CK2α′ (or CK2α) cooperates with Ha-ras in foci formation of rat primary embryo fibroblasts. Moreover, we observed that BALB/c 3T3 fibroblasts transformed with Ha-ras and CK2α′ show a faster growth rate than cells transformed with Ha-rasalone. In these cells the higher growth rate correlates with an increase in calmodulin phosphorylation, a protein substrate specifically affected by isolated CK2 catalytic subunits but not by CK2 holoenzyme, suggesting that unbalanced expression of a CK2 catalytic subunit synergizes with Ha-ras in cell transformation