21 research outputs found

    The application of artificial intelligence in diabetic retinopathy screening: a Saudi Arabian perspective

    Get PDF
    IntroductionDiabetic retinopathy (DR) is the leading cause of preventable blindness in Saudi Arabia. With a prevalence of up to 40% of patients with diabetes, DR constitutes a significant public health burden on the country. Saudi Arabia has not yet established a national screening program for DR. Mounting evidence shows that Artificial intelligence (AI)-based DR screening programs are slowly becoming superior to traditional screening, with the COVID-19 pandemic accelerating research into this topic as well as changing the outlook of the public toward it. The main objective of this study is to evaluate the perception and acceptance of AI in DR screening among eye care professionals in Saudi Arabia.MethodsA cross-sectional study using a self-administered online-based questionnaire was distributed by email through the registry of the Saudi Commission For Health Specialties (SCFHS). 309 ophthalmologists and physicians involved in diabetic eye care in Saudi Arabia participated in the study. Data analysis was done by SPSS, and a value of p < 0.05 was considered significant for statistical purposes.Results54% of participants rated their level of AI knowledge as above average and 63% believed that AI and telemedicine are interchangeable. 66% believed that AI would decrease the workforce of physicians. 79% expected clinical efficiency to increase with AI. Around 50% of participants expected AI to be implemented in the next 5 years.DiscussionMost participants reported good knowledge about AI. Physicians with more clinical experience and those who used e-health apps in clinical practice regarded their AI knowledge as higher than their peers. Perceived knowledge was strongly related to acceptance of the benefits of AI-based DR screening. In general, there was a positive attitude toward AI-based DR screening. However, concerns related to the labor market and data confidentiality were evident. There should be further education and awareness about the topic

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio

    Forward modeling of standing kink modes in coronal loops. I. Synthetic views

    Get PDF
    Kink magnetohydrodynamic (MHD) waves are frequently observed in various magnetic structures of the solar atmosphere. They may contribute significantly to coronal heating and could be used as a tool to diagnose the solar plasma. In this study, we synthesize the Fe ix λ171.073 emission of a coronal loop supporting a standing kink MHD mode. The kink MHD wave solution of a plasma cylinder is mapped into a semi-torus structure to simulate a curved coronal loop. We decompose the solution into a quasi-rigid kink motion and a quadrupole term, which dominate the plasma inside and outside of the flux tube, respectively. At the loop edges, the line of sight integrates relatively more ambient plasma, and the background emission becomes significant. The plasma motion associated with the quadrupole term causes spectral line broadening and emission suppression. The periodic intensity suppression will modulate the integrated intensity and the effective loop width, which both exhibit oscillatory variations at half of the kink period. The quadrupole term can be directly observed as a pendular motion at the front view

    Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

    Get PDF

    Magnetohydrodynamic Oscillations in the Solar Corona and Earth’s Magnetosphere: Towards Consolidated Understanding

    Full text link

    Klein-Gordon equations for horizontal transverse oscillations in two-dimensional coronal loops

    No full text
    We present a theory for hydromagnetic waves in an axi-symmetric background magnetic field in which the wave equations for the horizontal transverse magnetic field and velocity perturbations can be transformed into Klein-Gordon (KG) equations. For harmonic time variations, the KG equations become a set of ordinary differential equations that can be solved along any individual field line, subject to boundary conditions at the two ends. The solutions provide the spatial (latitudinal) profiles of the transverse magnetic field and velocity oscillations, especially in the horizontal direction, along the field line. In particular, we examine the KG solutions for two background field geometries: a local dipole field line, and a stretched global dipole field line which may approximate coronal loop geometries in the solar corona. The results yield the oscillation frequencies in agreement with observations (periods on the order of minutes), and the spatial profiles which are characteristic of a propagating type near the center of the loop and a possible evanescent type towards the footpoints of the loop. The latter solution arises when the oscillation frequency is less than a critical cut-off frequency which varies spatially along the loop. The oscillation amplitude is also affected by an adiabatic growth/decay factor along the loop. We discuss the implications of our results and future applications to coronal loop oscillations
    corecore