1,881 research outputs found

    Unexpected monophyletic origin of Ephoron shigae unisexual reproduction strains and their rapid expansion across Japan

    Get PDF
    The burrowing polymitarcyid mayfly Ephoron shigae is distributed across Japan, Korea, northeast China and far east Russia. Some populations are bisexual, and others are unisexual, i.e. geographically parthenogenetic throughout Japan. In general, parthenogenetic organisms are often found in harsh environments, such as at high latitudes and altitudes, in xeric as opposed to mesic conditions, in isolated habitats such as islands and island-like areas, and at the peripheral regions of the taxon's range. In E. shigae, however, the distributions of bisexual and unisexual populations overlap broadly in their respective geographical ranges. In the analysis of mitochondrial 16S rRNA and COI, we revealed that unisexual populations were of monophyletic origin and recently differentiated somewhere in western Japan. In the nuclear DNA EFI-alpha analysis, parthenogenetic strains had two genotypes, i.e. the heterozygous genotype of E1/E3 and the homozygous genotype of E1/E1 or E3/E3, while specimens of bisexual lineage had 20 genotypes. These results are consistent with an automixis mode of reproduction for the parthenogenetic strains, and also support the monophyletic origin of the parthenogenetic strains. Furthermore, there would be no gene flow between the specimens of the bisexual lineage and those of the parthenogenetic strain.ArticleROYAL SOCIETY OPEN SCIENCE. 2(6):150072 (2015)journal articl

    Magnetic field-induced one-magnon Raman scattering in the magnon Bose-Einstein condensation phase of TlCuCl3_{3}

    Full text link
    We report the observation of the AgA_{\rm g}-symmetric one-magnon Raman peak in the magnon Bose-Einstein condensation phase of TlCuCl3_{3}. Its Raman shift traces the one-magnon energy at the magnetic Γ\Gamma point, and its intensity is proportional to the squared transverse magnetization. The appearance of the one-magnon Raman scattering originates from the exchange magnon Raman process and reflects the change of the magnetic-state symmetry. Using the bond-operator representation, we theoretically clarify the Raman selection rules, being consistent with the experimental results.Comment: 6 pages, 4 figure

    Longitudinal magnetic excitation in KCuCl3 studied by Raman scattering under hydrostatic pressures

    Full text link
    We measure Raman scattering in an interacting spin-dimer system KCuCl3 under hydrostatic pressures up to 5 GPa mediated by He gas. In the pressure-induced quantum phase, we observe a one-magnon Raman peak, which originates from the longitudinal magnetic excitationand is observable through the second-order exchange interaction Raman process. We report the pressure dependence of the frequency, halfwidth and Raman intensity of this mode.Comment: 4 pages, 3 figures, inpress in JPCS as a proceeding of LT2

    Generic phase diagram of active polar films

    Full text link
    We study theoretically the phase diagram of compressible active polar gels such as the actin network of eukaryotic cells. Using generalized hydrodynamics equations, we perform a linear stability analysis of the uniform states in the case of an infinite bidimensional active gel to obtain the dynamic phase diagram of active polar films. We predict in particular modulated flowing phases, and a macroscopic phase separation at high activity. This qualitatively accounts for experimental observations of various active systems, such as acto-myosin gels, microtubules and kinesins in vitro solutions, or swimming bacterial colonies.Comment: 4 pages, 1 figur

    Therapeutic Efficacy of Adoptive Cell Transfer on Survival of Patients with Glioblastoma Multiforme: Case Reports

    Get PDF
    Glioblastoma multiforme (GBM), which occurs mostly in individuals over the age of 40, accounts for 12–15% of all primary brain tumors. Patients with GBM have a poor prognosis, even after aggressive upfront therapies. The present study documents that in 5 of these patients, the use of a novel immunotherapeutic approach combined with standard initial therapies resulted in a prolonged survival of over 3 years, which is significantly longer than the expected survival time with conventional therapies. During the course of intravenous cell-transfer immunotherapy, axial magnetic resonance images of the tumor region were monitored for over 5 years. The discontinuation of adoptive transfer regimens resulted in the rapid deterioration of patients with development of Gd-enhancing regions, indicating the initiation of tumor recurrence. Among patients with recurrence, the reinstatement of adoptive cell regimens with more frequent cell-transfers resulted in an apparent re-regression of tumors. Significantly longer survival times were seen in patients receiving transferred autologous lymphoid cells which were expanded in vitro, and which had a considerable proportion of γδT cells. We conclude that immunotherapy, combined with standard treatment, plays a significant role in the management of GBM patients and provides patients with a better prognosis

    Coherent oscillations of electrons in tunnel-coupled wells under ultrafast intersubband excitation

    Full text link
    Ultrafast intersubband excitation of electrons in tunnell-coupled wells is studied depending on the structure parameters, the duration of the infrared pump and the detuning frequency. The temporal dependencies of the photoinduced concentration and dipole moment are obtained for two cases of transitions: from the single ground state to the tunnel-coupled excited states and from the tunnel-coupled states to the single excited state. The peculiarities of dephasing and population relaxation processes are also taken into account. The nonlinear regime of the response is also considered when the splitting energy between the tunnel-coupled levels is renormalized by the photoexcited electron concentration. The dependencies of the period and the amplitude of oscillations on the excitation pulse are presented with a description of the nonlinear oscillations damping.Comment: 8 pages, 12 figure

    Confirmation of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor interactions in Rb2{}_{2}Cu2{}_{2}Mo3{}_{3}O12{}_{12}

    Full text link
    We have investigated magnetic properties of Rb2_2Cu2_2Mo3_3O12_{12} powder. Temperature dependence of magnetic susceptibility and magnetic-field dependence of magnetization have shown that this cuprate is a model compound of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor (2NN) competing interactions (competing system). Values of the 1NN and 2NN interactions are estimated as J1=138J_1 = -138 K and J2=51J_2 = 51 K (αJ2/J1=0.37\alpha \equiv J_2 / J_1 = -0.37). This value of α\alpha suggests that the ground state is a spin-singlet incommensurate state. In spite of relatively large J1J_1 and J2J_2, no magnetic phase transition appears down to 2 K, while an antiferromagnetic transition occurs in other model compounds of the competing system with ferromagnetic 1NN interaction. For that reason, Rb2_2Cu2_2Mo3_3O12_{12} is an ideal model compound to study properties of the incommensurate ground state that are unconfirmed experimentally.Comment: 6 pages, 4 figure

    Decaying shock studies of phase transitions in MgOSiO2 systems: implications for the Super-Earths interiors

    Full text link
    We report an experimental study of the phase diagrams of periclase (MgO), enstatite (MgSiO3) and forsterite (Mg2SiO4) at high pressures. We investigated with laser driven decaying shocks the pressure/temperature curves of MgO, MgSiO3 and Mg2SiO4 between 0.2-1.2 TPa, 0.12-0.5 TPa and 0.2-0.85 TPa respectively. A melting signature has been observed in MgO at 0.47 TPa and 9860 K, while no phase changes were observed neither in MgSiO3 nor in Mg2SiO4. An increasing of reflectivity of MgO, MgSiO3 and Mg2SiO4 liquids have been detected at 0.55 TPa -12 760 K, 0.15 TPa - 7540 K, 0.2 TPa - 5800 K, respectively. In contrast to SiO2, melting and metallization of these compounds do not coincide implying the presence of poor electrically conducting liquids close to the melting lines. This has important implications for the generation of dynamos in Super-earths mantles
    corecore