308 research outputs found

    Neutrino-induced deuteron disintegration experiment

    Get PDF
    Cross sections for the disintegration of the deuteron via neutral-current (NCD) and charged-current (CCD) interactions with reactor antineutrinos are measured to be 6.08 +/- 0.77 x 10^(-45) cm-sq and 9.83 +/- 2.04 x 10^(-45) cm-sq per neutrino, respectively, in excellent agreement with current calculations. Since the experimental NCD value depends upon the CCD value, if we use the theoretical value for the CCD reaction, we obtain the improved value of 5.98 +/- 0.54 x 10^(-45) for the NCD cross section. The neutral-current reaction allows a unique measurement of the isovector-axial vector coupling constant in the hadronic weak interaction (beta). In the standard model, this constant is predicted to be exactly 1, independent of the Weinberg angle. We measure a value of beta^2 = 1.01 +/- 0.16. Using the above improved value for the NCD cross section, beta^2 becomes 0.99 +/- 0.10.Comment: 22pages, 9 figure

    Investigation of the chemical vicinity of crystal defects in ion-irradiated Mg and AZ31 with coincident Doppler broadening spectroscopy

    Full text link
    Crystal defects in magnesium and magnesium based alloys like AZ31 are of major importance for the understanding of their macroscopic properties. We have investigated defects and their chemical surrounding in Mg and AZ31 on an atomic scale with Doppler broadening spectroscopy of the positron annihilation radiation. In these Doppler spectra the chemical information and the defect contribution have to be thoroughly separated. For this reason samples of annealed Mg were irradiated with Mg-ions in order to create exclusively defects. In addition Al- and Zn-ion irradiation on Mg-samples was performed in order to create samples with defects and impurity atoms. The ion irradiated area on the samples was investigated with laterally and depth resolved positron Doppler broadening spectroscopy (DBS) and compared with preceding SRIM-simulations of the vacancy distribution, which are in excellent agreement. The investigation of the chemical vicinity of crystal defects in AZ31 was performed with coincident Doppler broadening spectroscopy (CDBS) by comparing Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. No formation of solute-vacancy complexes was found due to the ion irradiation, despite the high defect mobility.Comment: Submitted to Physical Review B on March 20 20076. Revised version submitted on September 28 2007. Accepted on October 19 200

    Final results from the Palo Verde Neutrino Oscillation Experiment

    Get PDF
    The analysis and results are presented from the complete data set recorded at Palo Verde between September 1998 and July 2000. In the experiment, the \nuebar interaction rate has been measured at a distance of 750 and 890 m from the reactors of the Palo Verde Nuclear Generating Station for a total of 350 days, including 108 days with one of the three reactors off for refueling. Backgrounds were determined by (a) the swapswap technique based on the difference between signal and background under reversal of the positron and neutron parts of the correlated event and (b) making use of the conventional reactor-on and reactor-off cycles. There is no evidence for neutrino oscillation and the mode \nuebar\to\bar\nu_x was excluded at 90% CL for \dm>1.1\times10^{-3} eV2^2 at full mixing, and \sinq>0.17 at large \dm.Comment: 11 pages, 8 figure

    Components of Antineutrino Emission in Nuclear Reactor

    Full text link
    New Μˉe,e{\bar{\nu}_e},e scattering experiments aimed for sensitive searches of the Îœe{\nu}_e magnetic moment and projects to explore small mixing angle oscillations at reactors call for a better understanding of the reactor antineutrino spectrum. Here we consider six components, which contribute to the total Μˉe{\bar{\nu}_e} spectrum generated in nuclear reactor. They are: beta decay of the fission fragments of 235^{235}U, 239^{239}Pu, 238^{238}U and 241^{241}Pu, decay of beta-emitters produced as a result of neutron capture in 238^{238}U and also due to neutron capture in accumulated fission fragments which perturbs the spectrum. For antineutrino energies less than 3.5 MeV we tabulate evolution of Μˉe{\bar{\nu}_e} spectra corresponding to each of the four fissile isotopes vs fuel irradiation time and their decay after the irradiation is stopped and also estimate relevant uncertainties. Small corrections to the ILL spectra are considered.Comment: LaTex 8 pages, 2 ps figure

    Sensitivities of Low Energy Reactor Neutrino Experiments

    Full text link
    The low energy part of the reactor neutrino spectra has not been experimentally measured. Its uncertainties limit the sensitivities in certain reactor neutrino experiments. The origin of these uncertainties are discussed, and the effects on measurements of neutrino interactions with electrons and nuclei are studied. Comparisons are made with existing results. In particular, the discrepancies between previous measurements with Standard Model expectations can be explained by an under-estimation of the low energy reactor neutrino spectra. To optimize the experimental sensitivities, measurements for \nuebar-e cross-sections should focus on events with large (>>1.5 MeV) recoil energy while those for neutrino magnetic moment searches should be based on events <<100 keV. The merits and attainable accuracies for neutrino-electron scattering experiments using artificial neutrino sources are discussed.Comment: 25 pages, 9 figure

    Production of Ultra-Cold-Neutrons in Solid \alpha-Oxygen

    Full text link
    Our recent neutron scattering measurements of phonons and magnons in solid \alpha-oxygen have led us to a new understanding of the production mechanismen of ultra-cold-neutrons (UCN) in this super-thermal converter. The UCN production in solid \alpha-oxygen is dominated by the excitation of phonons. The contribution of magnons to UCN production becomes only slightly important above E >10 meV and at E >4 meV. Solid \alpha-oxygen is in comparison to solid deuterium less effcient in the down-scattering of thermal or cold neutrons into the UCN energy regime.Comment: 4 pages, 5 figuer

    Is the Unitarity of the quark-mixing-CKM-matrix violated in neutron ÎČ\beta-decay?

    Full text link
    We report on a new measurement of neutron ÎČ\beta-decay asymmetry. From the result \linebreak A0A_0 = -0.1189(7), we derive the ratio of the axial vector to the vector coupling constant λ\lambda = gA/gV{\it g_A/g_V} = -1.2739(19). When included in the world average for the neutron lifetime τ\tau = 885.7(7)s, this gives the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix VudV_{ud} . With this value and the Particle Data Group values for VusV_{us} and VubV_{ub}, we find a deviation from the unitarity condition for the first row of the CKM matrix of Δ\Delta = 0.0083(28), which is 3.0 times the stated error

    Reactor-based Neutrino Oscillation Experiments

    Get PDF
    The status of neutrino oscillation searches employing nuclear reactors as sources is reviewed. This technique, a direct continuation of the experiments that proved the existence of neutrinos, is today an essential tool in investigating the indications of oscillations found in studying neutrinos produced in the sun and in the earth's atmosphere. The low-energy of the reactor \nuebar makes them an ideal tool to explore oscillations with small mass differences and relatively large mixing angles. In the last several years the determination of the reactor anti-neutrino flux and spectrum has reached a high degree of accuracy. Hence measurements of these quantities at a given distance L can be readily compared with the expectation at L = 0, thus testing \nuebar disappearance. While two experiments, Chooz and Palo Verde, with baselines of about 1 km and thus sensitive to the neutrino mass differences associated with the atmospheric neutrino anomaly, have collected data and published results recently, an ambitious project with a baseline of more than 100 km, Kamland, is preparing to take data. This ultimate reactor experiment will have a sensitivity sufficient to explore part of the oscillation phase space relevant to solar neutrino scenarios. It is the only envisioned experiment with a terrestrial source of neutrinos capable of addressing the solar neutrino puzzle.Comment: Submitted to Reviews of Modern Physics 34 pages, 39 figure

    Accelerator and Reactor Neutrino Oscillation Experiments in a Simple Three-Generation Framework

    Get PDF
    We present a new approach to the analysis of neutrino oscillation experiments, in the one mass-scale limit of the three-generation scheme. In this framework we reanalyze and recombine the most constraining accelerator and reactor data, in order to draw precise bounds in the new parameter space. We consider our graphical representations as particularly suited to show the interplay among the different oscillation channels. Within the same framework, the discovery potential of future short and long baseline experiments is also investigated, in the light of both the recent signal from the LSND experiment and the atmospheric neutrino anomaly.Comment: uuencoded compressed tar file. Figures (13) available by ftp to ftp://eku.sns.ias.edu/pub/lisi/ (192.16.204.30). Submitted to Physical Review
    • 

    corecore