289 research outputs found

    Copper metabolism of astrocytes

    Get PDF
    This short review will summarize the current knowledge on the uptake, storage and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH) content as well as synthesis of metallothioneins, suggesting that excess of copper is stored as complex with GSH and in metallothioneins. Furthermore, exposure of astrocytes to copper accelerates the release of GSH and of glycolytically generated lactate. Astrocytes are able to export copper and express the Menkes protein ATP7A. This protein undergoes reversible, copper-dependent trafficking between the trans-Golgi network and vesicular structures. The ability of astrocytes to efficiently take up, store and export copper suggests that astrocytes play a key role in the supply of neurons with copper and that astrocytes should be considered as target for therapeutic inventions that aim to correct disturbances in brain copper homeostasis

    Heart Rate during Conflicts Predicts Post-Conflict Stress-Related Behavior in Greylag Geese

    Get PDF
    Background: Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids), but also in how individuals behave directly after a conflict. Certain ‘stress-related behaviors ’ such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual’s emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood. Methodology/Principal Findings: We recorded beat-to-beat heart rates (HR) of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict. Conclusions/Significance: To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that ‘stress-related behaviors’ are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual’s emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose tha

    Pressure Dependence of Born Effective Charges, Dielectric Constant and Lattice Dynamics in SiC

    Full text link
    The pressure dependence of the Born effective charge, dielectric constant and zone-center LO and TO phonons have been determined for 3C3C-SiC by a linear response method based on the linearized augmented plane wave calculations within the local density approximation. The Born effective charges are found to increase nearly linearly with decreasing volume down to the smallest volume studied, V/V0=0.78V/V_0=0.78, corresponding to a pressure of about 0.8 Mbar. This seems to be in contradiction with the conclusion of the turnover behavior recently reported by Liu and Vohra [Phys.\ Rev.\ Lett.\ {\bf 72}, 4105 (1994)] for 6H6H-SiC. Reanalyzing their procedure to extract the pressure dependence of the Born effective charges, we suggest that the turnover behavior they obtained is due to approximations in the assumed pressure dependence of the dielectric constant ε∞\varepsilon_\infty, the use of a singular set of experimental data for the equation of state, and the uncertainty in measured phonon frequencies, especially at high pressure.Comment: 25 pages, revtex, 5 postscript figures appended, to be published in Phys. Rev.

    Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis

    Get PDF
    Objective Current non-invasive diagnostic tests can distinguish between pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC)) and chronic pancreatitis (CP) in only about two thirds of patients. We have searched for blood-derived metabolite biomarkers for this diagnostic purpose. Design For a case-control study in three tertiary referral centres, 914 subjects were prospectively recruited with PDAC (n=271), CP (n=282), liver cirrhosis (n=100) or healthy as well as non-pancreatic disease controls (n=261) in three consecutive studies. Metabolomic profiles of plasma and serum samples were generated from 477 metabolites identified by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Results A biomarker signature (nine metabolites and additionally CA19-9) was identified for the differential diagnosis between PDAC and CP. The biomarker signature distinguished PDAC from CP in the training set with an area under the curve (AUC) of 0.96 (95% CI 0.93-0.98). The biomarker signature cut-off of 0.384 at 85% fixed specificity showed a sensitivity of 94.9% (95% CI 87.0%-97.0%). In the test set, an AUC of 0.94 (95% CI 0.91-0.97) and, using the same cut-off, a sensitivity of 89.9% (95% CI 81.0%-95.5%) and a specificity of 91.3% (95% CI 82.8%-96.4%) were achieved, successfully validating the biomarker signature. Conclusions In patients with CP with an increased risk for pancreatic cancer (cumulative incidence 1.95%), the performance of this biomarker signature results in a negative predictive value of 99.9% (95% CI 99.7%-99.9%) (training set) and 99.8% (95% CI 99.6%-99.9%) (test set). In one third of our patients, the clinical use of this biomarker signature would have improved diagnosis and treatment stratification in comparison to CA19-9

    ECInvestigation of NO2 Pollutions on Board of Research Aircraft (Some Results of QUANTIFY and POLARCAT Field Campaigns)

    Get PDF
    The results of investigation of NO2 pollutions on board of research aircraft Falcon (DLR, Germany) are presented. The measurements have been carried out by chemiluminescent nitrogen dioxide analyzer developed in Central Aerological Observatory (Russia). The data of NO2 distribution have been obtained during QUANTIFY (West Europe, July 2007) and POLARCAT (Greenland, July 2008) field campaigns. NO2 measurements over Greenland during POLARCAT field campaign have been carried out using ACCENT support. Different sources of nitrogen oxides are investigated. Some aspects of nitrogen dioxide distribution and transport are considered. Chemical transformation of nitrogen oxides inside ship plumes is observed and analyzed

    Receptor autoantibodies: Associations with cardiac markers, histology, and function in human non-ischaemic heart failure

    Get PDF
    AIMS: A causal link between non-ischaemic heart failure (HF) and humoral autoimmunity against G-protein-coupled receptors (GPCR) remains unclear except for Chagas' cardiomyopathy. Uncertainty arises from ambiguous reports on incidences of GPCR autoantibodies, spurious correlations of autoantibody levels with disease activity, and lack of standardization and validation of measuring procedures for putatively cardio-pathogenic GPCR autoantibodies. Here, we use validated and certified immune assays presenting native receptors as binding targets. We compared candidate GPCR autoantibody species between HF patients and healthy controls and tested associations of serum autoantibody levels with serological, haemodynamic, metabolic, and functional parameters in HF. METHODS: Ninety-five non-ischaemic HF patients undergoing transcatheter endomyocardial biopsy and 60 healthy controls were included. GPCR autoantibodies were determined in serum by IgG binding to native receptors or a cyclic peptide (for ß1AR autoantibodies). In patients, cardiac function, volumes, and myocardial structural properties were assessed by cardiac magnetic resonance imaging; right heart catheterization served for determination of cardiac haemodynamics; endomyocardial biopsies were used for histological assessment of cardiomyopathy and determination of cardiac mitochondrial oxidative function by high-resolution respirometry. RESULTS: Autoantibodies against ß(1) adrenergic (ß(1) AR), M5-muscarinic (M5AR), and angiotensin II type 2 receptors (AT2R) were increased in HF (all P < 0.001). Autoantibodies against a(1) -adrenergic (a(1) AR) and angiotensin II type 1 receptors (AT1R) were decreased in HF (all P < 0.001). Correlation of alterations of GPCR autoantibodies with markers of cardiac or systemic inflammation or cardiac damage, haemodynamics, myocardial histology, or left ventricular inflammation (judged by T2 mapping) were weak, even when corrected for total IgG. ß(1) AR autoantibodies were related inversely to markers of left ventricular fibrosis indicated by T1 mapping (r = -0.362, P < 0.05) and global longitudinal strain (r = -0.323, P < 0.05). AT2R autoantibodies were associated with improved myocardial mitochondrial coupling as measured by high-resolution respirometry in myocardial biopsies (r = -0.352, P < 0.05). In insulin-resistant HF patients, AT2R autoantibodies were decreased (r = -.240, P < 0.05), and AT1R autoantibodies were increased (r = 0.212, P < 0.05). CONCLUSIONS: GPCR autoantibodies are markedly altered in HF. However, they are correlated poorly or even inversely to haemodynamic, metabolic, and functional markers of disease severity, myocardial histology, and myocardial mitochondrial efficiency. These observations do not hint towards a specific cardio-pathogenic role of GPCR autoantibodies and suggest that further investigations are required before specific therapies directed at GPCR autoantibodies can be clinically tested in non-ischaemic HF

    Seasonal differences of corticosterone metabolite concentrations and parasite burden in northern bald ibis (Geronticus eremita): The role of affiliative interactions

    Get PDF
    The reproductive season is energetically costly as revealed by elevated glucocorticoid concentrations, constrained immune functions and an increased risk of infections. Social allies and affiliative interactions may buffer physiological stress responses and thereby alleviate associated effects. In the present study, we investigated the seasonal differences of immune reactive corticosterone metabolite concentrations, endoparasite burden (nematode eggs and coccidian oocysts) and affiliative interactions in northern bald ibis (Geronticus eremita), a critically endangered bird. In total, 43 individually marked focal animals from a freeranging colony were investigated. The analyses included a description of initiated and received affiliative interactions, pair bond status as well as seasonal patterns of hormone and endoparasite levels. During the reproductive season, droppings contained parasite eggs more often and corticosterone metabolite levels were higher as compared to the period after reproduction. The excretion rate of endoparasite products was lower in paired individuals than in unpaired ones, but paired animals exhibited higher corticosterone metabolite concentrations than unpaired individuals. Furthermore, paired individuals initiated affiliative behaviour more frequently than unpaired ones. This suggests that the reproductive season influences the excretion patterns of endoparasite products and corticosterone metabolites and that affiliative interactions between pair partners may positively affect endoparasite burden during periods of elevated glucocorticoid levels. Being embedded in a pair bond may have a positive impact on individual immune system and parasite resistance
    • …
    corecore