217 research outputs found

    Ethanol Activation of Protein Kinase A Regulates GABAA Receptor Subunit Expression in the Cerebral Cortex and Contributes to Ethanol-Induced Hypnosis

    Get PDF
    Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking, and synaptic excitability. Both protein kinase C (PKC) and A (PKA) are involved in regulation of γ-aminobutyric acid type A (GABAA) receptors through phosphorylation. However, the role of PKA in regulating GABAA receptors (GABAA-R) following acute ethanol exposure is not known. The present study investigated the role of PKA in the effects of ethanol on GABAA-R α1 subunit expression in rat cerebral cortical P2 synaptosomal fractions. Additionally, GABA-related behaviors were examined. Rats were administered ethanol (2.0–3.5 g/kg) or saline and PKC, PKA, and GABAA-R α1 subunit levels were measured by western blot analysis. Ethanol (3.5 g/kg) transiently increased GABAA-R α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, lower ethanol doses (2.0 g/kg) had no effect on GABAA-R α1 subunit levels, although PKA type II regulatory subunits RIIα and RIIβ were increased at 10 and 60 min when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABAA-R α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABAA-R α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex (LORR) duration. This effect appears to be mediated in part by GABAA-R as increasing PKA activity also increased the duration of muscimol-induced LORR. Overall, these data suggest that PKA mediates ethanol-induced GABAA-R expression and contributes to behavioral effects of ethanol involving GABAA-R

    A broader role for AmyR in Aspergillus niger: regulation of the utilisation of d-glucose or d-galactose containing oligo- and polysaccharides

    Get PDF
    AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on d-glucose- and d-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that d-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed

    A New Strategy to Generate Functional Insulin-Producing Cell Lines by Somatic Gene Transfer into Pancreatic Progenitors

    Get PDF
    BACKGROUND: There is increasing interest in developing human cell lines to be used to better understand cell biology, but also for drug screening, toxicology analysis and future cell therapy. In the endocrine pancreatic field, functional human beta cell lines are extremely scarce. On the other hand, rodent insulin producing beta cells have been generated during the past years with great success. Many of such cell lines were produced by using transgenic mice expressing SV40T antigen under the control of the insulin promoter, an approach clearly inadequate in human. Our objective was to develop and validate in rodent an alternative transgenic-like approach, applicable to human tissue, by performing somatic gene transfer into pancreatic progenitors that will develop into beta cells. METHODS AND FINDINGS: In this study, rat embryonic pancreases were transduced with recombinant lentiviral vector expressing the SV40T antigen under the control of the insulin promoter. Transduced tissues were next transplanted under the kidney capsule of immuno-incompetent mice allowing insulinoma development from which beta cell lines were established. Gene expression profile, insulin content and glucose dependent secretion, normalization of glycemia upon transplantation into diabetic mice validated the approach to generate beta cell lines. CONCLUSIONS: Somatic gene transfer into pancreatic progenitors represents an alternative strategy to generate functional beta cell lines in rodent. Moreover, this approach can be generalized to derive cells lines from various tissues and most importantly from tissues of human origin

    Larger is Better: The Scale Effects of the Italian Local Healthcare Authorities Amalgamation Program

    Get PDF
    Consolidation is often considered as a means to lower service delivery costs and enhance accountability. This paper uses a prospective evaluation design to derive estimates of the potential cost savings that may arise from Local Healthcare Authorities (LHAs) amalgamation process, which is concerning the Itali an National Health System. We focus specifically on cost savings due to scale economies with reference to a particular subset of the production costs of the LHAs, i.e. the administrative costs together with the purchasing costs of both goods as well as non-healthcare related services. Our results demonstrate the existence of economies of scale linked to the size of the LHA population. Hence, the decision to reduce the number of LHAs may result in larger local health authorities that are more cost efficient, especially when the consolidation process concerns merging a large number of LHA

    Synthesis of carboxylated derivatives of poly(isobutylene-co-isoprene) by azide–alkyne “click” chemistry

    Get PDF
    The final publication is available at Springer via https://dx.doi.org/10.1038/s41428-018-0130-yThe synthesis of carboxylated derivatives of poly(isobutylene-co-isoprene) (isobutylene–isoprene rubber, IIR) with substitution levels ranging from 1 to 4 mol% and different spacer lengths was accomplished through azide–alkyne Huisgen cycloaddition. Azido-functionalized IIR was first prepared by reacting brominated IIR with sodium azide to full conversion in a 90:10 tetrahydrofuran/N,N-dimethylacetamide mixture. The click reaction of azido-functionalized IIR with acetylenic acids, which was carried out using the copper(I) bromide/N,N,N′,N″,N″-pentamethyldiethylenetriamine catalyst system in tetrahydrofuran, yielded carboxylated IIRs. The products were characterized by 1H NMR and FT-IR spectroscopy, and their molecular weight was determined by size exclusion chromatography analysis. The conversion to carboxylated groups reached up to 100% as determined by NMR spectroscopy but was highly dependent on the type of solvent and the amounts of catalysts and reactants used in the procedures.ARLANXEO Canada Inc.Natural Sciences and Engineering Research Council (NSERC) of Canad
    corecore