28 research outputs found

    Comparative effect of intraoperative propacetamol versus placebo on morphine consumption after elective reduction mammoplasty under remifentanil-based anesthesia: a randomized control trial [ISRCTN71723173]

    Get PDF
    BACKGROUND: Postoperative administration of paracetamol or its prodrug propacetamol has been shown to decrease pain with a morphine sparing effect. However, the effect of propacetamol administered intra-operatively on post-operative pain and early postoperative morphine consumption has not been clearly evaluated. In order to evaluate the effectiveness of analgesic protocols in the management of post-operative pain, a standardized anesthesia protocol without long-acting opioids is crucial. Thus, for ethical reasons, the surgical procedure under general anesthesia with remifentanil as the only intraoperative analgesic must be associated with a moderate predictable postoperative pain. METHODS: We were interested in determining the postoperative effect of propacetamol administered intraoperatively after intraoperative remifentanil. Thirty-six adult women undergoing mammoplasty with remifentanil-based anesthesia were randomly assigned to receive propacetamol 2 g or placebo one hour before the end of surgery. After remifentanil interruption and tracheal extubation in recovery room, pain was assessed and intravenous titrated morphine was given. The primary end-point was the cumulative dose of morphine administered in the recovery room. The secondary end-points were the pain score after tracheal extubation and one hour after, the delay for obtaining a Simplified Numerical Pain Scale (SNPS) less than 4, and the incidence of morphine side effects in the recovery room. For intergroup comparisons, categorical variables were compared using the chi-squared test and continuous variables were compared using the Student t test or Mann-Whitney U test, as appropriate. A p value less than 0.05 was considered as significant. RESULTS: In recovery room, morphine consumption was lower in the propacetamol group than in the placebo group (p = 0.01). Pain scores were similar in both groups after tracheal extubation and lower in the propacetamol group (p = 0.003) one hour after tracheal extubation. The time to reach a SNPS < 4 was significantly shorter in the propacetamol group (p = 0.02). The incidence of morphine related side effects did not differ between the two groups. CONCLUSIONS: Intraoperative propacetamol administration with remifentanil based-anesthesia improved significantly early postoperative pain by sparing morphine and shortening the delay to achieve pain relief

    Markers of subtypes in inflammatory breast cancer studied by immunohistochemistry: Prominent expression of P-cadherin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory breast cancer (IBC) is a distinct and aggressive form of locally-advanced breast cancer with high metastatic potential. In Tunisia, IBC is associated with a high death rate. Among the major molecular subtypes, basal breast carcinomas are poorly differentiated, have metastatic potential and poor prognosis, but respond relatively well to chemotherapy. The aim of this study was to determine the distribution of molecular subtypes in IBC and identify factors that may explain the poor prognosis of IBC.</p> <p>Methods</p> <p>To determine breast cancer subtypes we studied by immunohistochemistry the expression of 12 proteins in a series of 91 Tunisian IBC and 541 non-IBC deposited in tissue microarrays.</p> <p>Results</p> <p>We considered infiltrating ductal cases only. We found 33.8% of basal cases in IBC vs 15.9% in non-IBC (p < 0.001), 33.3% of ERBB2-overexpressing cases in IBC vs 14.5% in non-IBC (p < 0.001), and 29.3% of luminal cases in IBC vs 59.9% in non-IBC (p < 0.001). The most differentially-expressed protein between IBCs and non-IBCs was P-cadherin. P-cadherin expression was found in 75.9% of all IBC vs 48.2% of all non-IBC (p < 0.001), 95% of IBC vs 69% of non-IBC (p = 0.02) in basal cases, and 82% of IBC vs 43% of non-IBC (p < 0.001) in luminal cases. Logistic regression determined that the most discriminating markers between IBCs and non-IBCs were P-cadherin (OR = 4.9, p = 0.0019) MIB1 (OR = 3.6, p = 0.001), CK14 (OR = 2.7, p = 0.02), and ERBB2 (OR = 2.3, p = 0.06).</p> <p>Conclusion</p> <p>Tunisian IBCs are characterized by frequent basal and ERBB2 phenotypes. Surprisingly, luminal IBC also express the basal marker P-cadherin. This profile suggests a specificity that needs further investigation.</p

    Expression of highly toxic genes in E. coli: special strategies and genetic tools.

    No full text
    International audienceEscherichia coli (E. coli) remains the most efficient widely-used host for recombinant protein production. Well-known genetics, high transformation efficiency, cultivation simplicity, rapidity and inexpensiveness are the main factors that contribute to the selection of this host. With the advent of the post-genomic era has come the need to express in this bacterium a growing number of genes originating from different organisms. Unfortunately, many of these genes severely interfere with the survival of E. coli cells. They lead to bacteria death or cause significant defects in bacteria growth that dramatically decrease expression capabilities. In this paper, we review special strategies and genetics tools successfully used to express, in E. coli, highly toxic genes. Suppression of basal expression from leaky inducible promoters, suppression of read-through transcription from cryptic promoters, tight control of plasmids copy numbers and proteins production as inactive (but reversible) forms are among the solutions presented and discussed. Special expression vectors and modified E. coli strains are listed and their effectiveness illustrated with key examples, some of which are related to our study of the highly toxic phage T4 restriction endoribonuclease RegB. We mainly selected those strategies and tools that permit E. coli normal growth until the very moment of highly toxic gene induction. Expression then occurs efficiently before cells die. Because they do not target a particular toxic effect, these strategies and tools can be used to express a wide variety of highly toxic genes

    Down-regulation of cinnamoyl-CoA reductase in tomato (Lycopersicon esculentum Mill.) induces dramatic changes in soluble phenolic pools

    No full text
    Health-beneficial properties of many plant secondary metabolites have driven much interest into the control of their biosynthesis in crop species. Phenolic compounds, including flavonoids, hydroxycinnamates and tannins, make up an important group of such phytonutrients. They are formed via the phenylpropanoid pathway and share common precursors with lignin, an insoluble cell wall-associated polymer. In this study, we aimed at reducing lignin biosynthesis to enhance availability of these precursors and thereby stimulate the production of soluble, potentially health-promoting, phenolic compounds in tomato (Lycopersicon esculentum Mill.). We first identified and characterized two tomato genes encoding cinnamoyl-CoA reductase (CCR), a key enzyme in the formation of lignin monomers. Transgenic plants exhibiting a reduced lignin content were subsequently obtained through an RNAi strategy targeting one of these genes. As anticipated, the total level of soluble phenolics was higher in stems and leaves of the transformants as compared to control plants. This was correlated with an increased antioxidant capacity of the corresponding plant extracts. Analysis of the soluble phenolic fraction by HPLC-MS revealed that vegetative organs of CCR down-regulated plants contained higher amounts of chlorogenic acid and rutin, and accumulated new metabolites undetectable in the wild type, such as N-caffeoyl putrescine and kaempferol rutinoside. In fruits, CCR down-regulation triggered the moderate accumulation of two new compounds in the flesh, but the total phenolic content was not affected. Although the prospects of exploiting such a strategy for crop improvement are limited, our results provide further insight into the control of the phenylpropanoid pathway in Solanaceae
    corecore