1,172 research outputs found

    New results for hadronic collisions in the framework of the Parton-Based Gribov-Regge Theory

    Get PDF
    We recently proposed a new approach to high energy nuclear scattering, which treats hadronic collisions in a sophisticated way. Demanding theoretical consistency as a minimal requirement for a realistic model, we provide a solution for the energy conservation, screening problems and identical elementary interactions, the so-called "Parton-Based Gribov-Regge Theory" including enhanced diagrams. We can now present some of our results for SPS and RHIC energies.Comment: 4 pages, 3 figures, To appear in the proceedings of Quark Matter 2002 (QM 2002), Nantes, France, 18-24 Jul 200

    Initial Condition for QGP Evolution from NEXUS

    Full text link
    We recently proposed a new approach to high energy nuclear scattering, which treats the initial stage of heavy ion collisions in a sophisticated way. We are able to calculate macroscopic quantities like energy density and velocity flow at the end of this initial stage, after the two nuclei having penetrated each other. In other words, we provide the initial conditions for a macroscopic treatment of the second stage of the collision. We address in particular the question of how to incorporate the soft component properly. We find almost perfect "Bjorken scaling": the rapidity coincides with the space-time rapidity, whereas the transverse flow is practically zero. The distribution of the energy density in the transverse plane shows typically a very "bumpy" structure.Comment: 17 pages, 24 figure

    A Novel Mechanism of H^0 Di-baryon Production in Proton-Proton Interactions from Parton Based Gribov-Regge Theory

    Get PDF
    A novel mechanism of H^0 and strangelet production in hadronic interactions within the Gribov-Regge approach is presented. In contrast to traditional distillation approaches, here the production of multiple (strange) quark bags does not require large baryon densities or a QGP. The production cross section increases with center of mass energy. Rapidity and transverse momentum distributions of the H^0 are predicted for pp collisions at E_lab = 160 AGeV (SPS) and \sqrt s = 200 AGeV (RHIC). The predicted total H^0 multiplicities are of order of the Omega-baryon yield and can be accessed by the NA49 and the STAR experiments.Comment: 4 page

    Strange Particles from NEXUS 3

    Full text link
    After discussing conceptual problems with the conventional string model, we present a new approach, based on a theoretically consistent multiple scattering formalism. First results for strange particle production in proton-proton scattering at 158 GeV and at 200 GeV (cms) are discussed.Comment: invited talk, given at the Strange Quark Matter Conference, Atlantic Beach, North Carolina, March 12-17, 200

    Force correlations and arches formation in granular assemblies

    Full text link
    In the context of a simple microscopic schematic scalar model we study the effects of spatial correlations in force transmission in granular assemblies. We show that the parameters of the normalized weights distribution function, P(v)vαexp(v/ϕ)P(v)\sim v^{\alpha}\exp(-v/\phi), strongly depend on the spatial extensions, ξV\xi_V, of such correlations. We show, then, the connections between measurable macroscopic quantities and microscopic mechanisms enhancing correlations. In particular we evaluate how the exponential cut-off, ϕ(ξV)\phi(\xi_V), and the small forces power law exponent, α(ξV)\alpha(\xi_V), depend on the correlation length, ξV\xi_V. If correlations go to infinity, weights are power law distributed.Comment: 6 page

    Enhanced Perturbative Continuous Unitary Transformations

    Full text link
    Unitary transformations are an essential tool for the theoretical understanding of many systems by mapping them to simpler effective models. A systematically controlled variant to perform such a mapping is a perturbative continuous unitary transformation (pCUT) among others. So far, this approach required an equidistant unperturbed spectrum. Here, we pursue two goals: First, we extend its applicability to non-equidistant spectra with the particular focus on an efficient derivation of the differential flow equations, which define the enhanced perturbative continuous unitary transformation (epCUT). Second, we show that the numerical integration of the flow equations yields a robust scheme to extract data from the epCUT. The method is illustrated by the perturbation of the harmonic oscillator with a quartic term and of the two-leg spin ladders in the strong-rung-coupling limit for uniform and alternating rung couplings. The latter case provides an example of perturbation around a non-equidistant spectrum.Comment: 27 pages, 18 figures; separated methodological background from introduction, added perturbed harmonic oscillator for additional illustration, added explicit solution of deepCUT equation

    Stress and Strain in Flat Piling of Disks

    Full text link
    We have created a flat piling of disks in a numerical experiment using the Distinct Element Method (DEM) by depositing them under gravity. In the resulting pile, we then measured increments in stress and strain that were associated with a small decrease in gravity. We first describe the stress in terms of the strain using isotropic elasticity theory. Then, from a micro-mechanical view point, we calculate the relation between the stress and strain using the mean strain assumption. We compare the predicted values of Young's modulus and Poisson's ratio with those that were measured in the numerical experiment.Comment: 9 pages, 1 table, 8 figures, and 2 pages for captions of figure

    Strangeness Suppression in Proton-Proton Collisions

    Full text link
    We analyse strangeness production in proton-proton (pp) collisions at SPS and RHIC energies, using the recently advanced NeXus approach. After having verified that the model reproduces well the existing data, we interpret the results: strangeness is suppressed in proton-proton collisions at SPS energy as compared to electron-positron (e+e-) annihilation due to the limited masses of the strings produced in the reaction, whereas high energy pp and e+e- collisions agree quantitatively . Thus strangeness suppression at SPS energies is a consequence of the limited phase-space available in string fragmentation.Comment: 7 Figures, 4 Page
    corecore