382 research outputs found
Thickness and uniformity characterization of thin targets for intense ion beam experiments
The NUMEN Experiment aims to get information on the Nuclear Matrix Elements of the Neutrinoless Double Beta Decay, by measuring heavyion induced Double Charge Exchange (DCE) reactions cross sections. A good energy resolution is needed to clearly distinguish energy states of DCE products. To measure the energy of reaction products with the required resolution, the target must be thin and uniform to minimise dispersion and straggling effects on the ejectile energy. Few hundreds of nanometers of the target isotope are deposited on a Highly Oriented Pyrolytic Graphite substrate a few micrometers thick. The results of the characterisation of the first target prototypes of tin and tellurium are presented. The Scanning Electron Microscopy was used to qualitatively analyse the samples surface. A setup to study Alpha Particle Transmission has been assembled to measure thickness and uniformity of the targets; the thickness results have been verified by the Rutherford Backscattering measurements. To evaluate the effects of the thickness on the resolution of the DCE products energy, a Monte Carlo code has been implemented, using the measured thickness and uniformity as input data for the simulation
Creation of pure non-crystalline diamond nanostructures via room-temperature ion irradiation and subsequent thermal annealing
Carbon exhibits a remarkable range of structural forms, due to the availability of sp3, sp2 and
sp1 chemical bonds. Contrarily to other group IV elements such as silicon and germanium,
the formation of an amorphous phase based exclusively on sp3 bonds is extremely
challenging due to the strongly favored formation of graphitic-like structures at room
19 temperature and pressure. As such, the formation of a fully sp3-bonded carbon phase requires
20 an extremely careful (and largely unexplored) definition of the pressure and temperature
across the phase diagram. Here, we report on the possibility of creating full-sp3 amorphous
nanostructures within the bulk crystal of diamond with room-temperature ion-beam
irradiation, followed by an annealing process that does not involve the application of any
external mechanical pressure. As confirmed by numerical simulations, the (previously
unreported) radiation-damage-induced formation of an amorphous sp2-free phase in diamond
is determined by the buildup of extremely high internal stresses from the surrounding lattice,
which (in the case of nanometer-scale regions) fully prevent the graphitization process.
Besides the relevance of understanding the formation of exotic carbon phases, the use of
focused/collimated ion beams discloses appealing perspectives for the direct fabrication of
such nanostructures in complex three-dimensional geometries
Evaluation of target non-uniformity and dispersion effects on energy measurement resolution in NUMEN experiment
In the NUMEN Experiment, Double Charge Exchange (DCE) reactions will be studied to get very precise measurements of their cross sections and final state levels. The interest for these reactions lies in the possibility for some nuclides to have DCE with initial and final states identical to those of the Neutrinoless Double β-Decay. To reach a good precision in the energy measurements, high statistics is needed and severe constraints about the target thickness must be satisfied. A 50 μA intense ion beam will provide the desired statistics, while posing the problem of dissipating the massive heat generated in the target. It is therefore necessary to design a suitable cooling system, which must affect the particles' energy as little as possible. Said energy is already influenced by the current setup. The Superconducting Cyclotron (SC) and the MAGNEX Spectrometer introduce an error on the particles' energy by 1/1000th (FWHM value) of its average energy. In the target, the main sources of error are straggling of projectiles and reaction products, and the dispersion effect. Both closely depend on the target thickness, which must be of the order of few hundred nanometres. In addition, the two effects are worsened if the target thickness is not uniform. The solution to these problems has been found by backing the target isotope with relatively thin substrate of Highly Oriented Pyrolytic Graphite (HOPG). Its thermodynamic properties fit the cooling requirements and can be as thin as 450 μg cm-2. The further straggling suffered by the ejectiles is tolerable, falling within the resolution requirements. Samples are deposited by using Electron Beam Evaporation: results obtained for Sn and Te are checked by Scanning Electron Microscopy (SEM). A quantitative evaluation of the samples' thickness has been performed by Alpha-Particle Transmission (APT) and Rutherford Backscattering Spectrometry (RBS) measurements. A Monte Carlo code has been implemented to estimate the ejectiles energy distribution using the experimental measurements as input. Results from characterization and simulations help in optimizing the target thickness and the energy resolution of reaction products
Micro-IL and micro-PIXE studies of rich diamond meteorites at Legnaro nuclear microprobe
Abstract A combination of micro-ionoluminescence (micro-IL) and micro-PIXE was used to characterize diamond grains inside a type of meteorites known as ureilites. Ureilites are a group of achondrites unique in containing relatively large amounts of carbon occurring as diamond, graphite or lonsdaleite. A shock origin for ureilitic diamonds has been widely accepted though an exact knowledge of the conditions during high-pressure graphite conversion is not yet achieved. Micro-IL is a very powerful technique for material investigation and particularly for diamond analysis. Using this technique we were able to identify the occurrence of the diamond phase inside carbon meteoritic inclusions and to perform micro-PIXE analysis on single diamond grains. In fact, IL in low nitrogen content diamonds is dominated by A-band emission (centered at about 2.9 eV) and so, considering only IL monochromatic map at such a spectral band, it was possible to identify them. By making measurements directly on the meteorites, contamination during chemical extraction processes was avoided and it was possible to study not only the diamond phase, but also its distribution inside carbon inclusions
A new study of Mg(,n)Si angular distributions at = 3 - 5 MeV
The observation of Al gives us the proof of active nucleosynthesis in
the Milky Way. However the identification of the main producers of Al is
still a matter of debate. Many sites have been proposed, but our poor knowledge
of the nuclear processes involved introduces high uncertainties. In particular,
the limited accuracy on the Mg(,n)Si reaction cross
section has been identified as the main source of nuclear uncertainty in the
production of Al in C/Ne explosive burning in massive stars, which has
been suggested to be the main source of Al in the Galaxy. We studied
this reaction through neutron spectroscopy at the CN Van de Graaff accelerator
of the Legnaro National Laboratories. Thanks to this technique we are able to
discriminate the (,n) events from possible contamination arising from
parasitic reactions. In particular, we measured the neutron angular
distributions at 5 different beam energies (between 3 and 5 MeV) in the
\ang{17.5}-\ang{106} laboratory system angular range. The presented results
disagree with the assumptions introduced in the analysis of a previous
experiment.Comment: 9 pages, 9 figures - accepted by EPJ
- …