16 research outputs found
Vitamin c—sources, physiological role, kinetics, deficiency, use, toxicity, and determination
Vitamin C (L‐ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facili-tation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic processes. Contrarily, high doses act as a pro‐oxidant than an anti‐oxidant. This may also be the reason why plasma levels are meticulously regulated on the level of absorption and excretion in the kidney. Interestingly, most cells contain vitamin C in millimolar concentrations, which is much higher than its plasma concentrations, and compared to other vitamins. The role of vitamin C is well demonstrated by miscellaneous symptoms of its absence—scurvy. The only clini-cally well‐documented indication for vitamin C is scurvy. The effects of vitamin C administration on cancer, cardiovascular diseases, and infections are rather minor or even debatable in the general population. Vitamin C is relatively safe, but caution should be given to the administration of high doses, which can cause overt side effects in some susceptible patients (e.g., oxalate renal stones). Lastly, analytical methods for its determination with advantages and pitfalls are also discussed in this review
Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases
Pathologic heart conditions, particularly heart failure (HF) and ischemia-reperfusion (I/R) injury, are characterized by sustained elevation of plasma and interstitial catecholamine levels, as well as by the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Despite the continuous and extensive research on catecholamines since the early years of the XX(th) century, the mechanisms underlying catecholamine-induced cardiotoxicity are still not fully elucidated. The role of catecholamines in HF, stress cardiomyopathy, I/R injury, ageing, stress, and pheochromocytoma will be thoroughly discussed. Furthermore and although the noxious effects resulting from catecholamine excess have traditionally been linked to adrenoceptors, in fact, several evidences indicate that oxidative stress and the oxidation of catecholamines can have important roles in catecholamine-induced cardiotoxicity. Accordingly, the reactive intermediates formed during catecholamine oxidation have been associated with cardiac toxicity, both in in vitro and in vivo studies. An insight into the influence of ROS, RNS, and catecholamine oxidation products on several heart diseases and their clinical course will be provided. In addition, the source and type of oxidant species formed in some heart pathologies will be referred. In this review a special focus will be given to the research of cardiac pathologies where catecholamines and oxidative stress are involved. An integrated vision of these matters is required and will be provided along this review, namely how the concomitant surge of catecholamines and ROS occurs and how they can be interconnected. The concomitant presence of these factors can elicit peculiar and not fully characterized responses on the heart. We will approach the existing data with new perspectives as they can help explaining several controversial results regarding cardiovascular diseases and the redox ability of catecholamines.info:eu-repo/semantics/publishedVersio
Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4-MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review
Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5 . These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function