2,270,403 research outputs found
Above-well, Stark, and potential-barrier resonances of an open square well in a static external electric field
Besides the well known Stark resonances, which are localized in the potential
well and tunnel through the potential barrier created by the dc-field,
"strange" long and short-lived resonances are analytically obtained. These
resonances are not localized inside the potential well. We show that the narrow
ones are localized above the potential well. These narrow resonances give rise
to a {\it peak structure} in a 1D scattering experiment. We also show that the
broad overlapping resonances are associated with the static electric field
potential barrier. These "strange" overlapping resonances do not give rise to a
{\it peak structure} in a 1D scattering experiment. We propose a 2D
experimental set-up where in principle these short-lived states should be
observed as {\it peaks}. Broad overlapping resonances, associated only with the
static electric field potential barrier, could also have observable effects in
a array of quantum wells in the presence of a truncated static electric
field. This last problem is associated with the resonance tunnelling phenomena
which are used in the construction of resonance-tunnelling diodes and
transistors.Comment: submitted to Phys. Rev. A, April 08 200
pi N --> Multi-pi N Scattering in the 1/N_c Expansion
We extend the 1/N_c expansion meson-baryon scattering formalism to cases in
which the final state contains more than two particles. We first show that the
leading-order large N_c processes proceed through resonant intermediate states
(e.g., rho N or pi Delta). We then tabulate linear amplitude expressions for
relevant processes and find that the pole structure of baryon resonances can be
uniquely identified by their (non)appearance in eta N or mixed partial-wave pi
Delta final states. We also show that quantitative predictions of pi N to pi
Delta branching ratios predicted at leading order alone do not agree with
measurements, but the inclusion of 1/N_c corrections is ample to explain the
discrepancies.Comment: 23 pages, 3 eps figures, ReVTeX4, added reference and discussion,
identical to PRD versio
Proposed New Test of Spin Effects in General Relativity
The recent discovery of a double-pulsar PSR J0737-3039A/B provides an
opportunity of unequivocally observing, for the first time, spin effects in
general relativity. Existing efforts involve detection of the precession of the
spinning body itself. However, for a close binary system, spin effects on the
orbit may also be discernable. Not only do they add to the advance of the
periastron (by an amount which is small compared to the conventional
contribution) but they also give rise to a precession of the orbit about the
spin direction. The measurement of such an effect would also give information
on the moment of inertia of pulsars
Bogoliubov transformations and exact isolated solutions for simple non-adiabatic Hamiltonians
We present a new method for finding isolated exact solutions of a class of
non-adiabatic Hamiltonians of relevance to quantum optics and allied areas.
Central to our approach is the use of Bogoliubov transformations of the bosonic
fields in the models. We demonstrate the simplicity and efficiency of this
method by applying it to the Rabi Hamiltonian.Comment: LaTeX, 16 pages, 1 figure. Minor additions and journal re
Interaction of moving breathers with an impurity
We analyze the influence of an impurity in the evolution of moving discrete
breathers in a Klein--Gordon chain with non-weak nonlinearity. Three different
behaviours can be observed when moving breathers interact with the impurity:
they pass through the impurity continuing their direction of movement; they are
reflected by the impurity; they are trapped by the impurity, giving rise to
chaotic breathers. Resonance with a breather centred at the impurity site is
conjectured to be a necessary condition for the appearance of the trapping
phenomenon.Comment: 4 pages, 2 figures, Proceedings of the Third Conference, San Lorenzo
De El Escorial, Spain 17-21 June 200
Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin- Models
We apply the microscopic coupled-cluster method (CCM) to the spin-
models on both the one-dimensional chain and the two-dimensional square
lattice. Based on a systematic approximation scheme of the CCM developed by us
previously, we carry out high-order {\it ab initio} calculations using
computer-algebraic techniques. The ground-state properties of the models are
obtained with high accuracy as functions of the anisotropy parameter.
Furthermore, our CCM analysis enables us to study their quantum critical
behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon
request. UMIST Preprint MA-000-000
- …