584 research outputs found
Nuclear halo and the coherent nuclear interaction
The unusual structure of Li11, the first halo nucleus found, is analyzed by
the Preparata model of nuclear structure. By applying Coherent Nucleus Theory,
we obtain an interaction potential for the halo-neutrons that rightly
reproduces the fundamental state of the system.Comment: 9 pages Submitted to International Journal of Modern Physics E
(IJMPE
Thin shell wormhole due to dyadosphere of a charged black hole
To explain Gamma Ray Bursts, Ruffini argued that the event horizon of a
charged black hole is surrounded by a special region called, the Dyadosphere
where electric field exceeds the critical value for pair
production. In the present work, we construct a thin shell wormhole by
performing a thought surgery between two dadospheres. Several physical
properties of this thin shell wormhole have been analyzed.Comment: 10 pages, 2 figures. Accepted in Mod.Phys.Lett.
Minimal Committee Problem for Inconsistent Systems of Linear Inequalities on the Plane
A representation of an arbitrary system of strict linear inequalities in R^n
as a system of points is proposed. The representation is obtained by using a
so-called polarity. Based on this representation an algorithm for constructing
a committee solution of an inconsistent plane system of linear inequalities is
given. A solution of two problems on minimal committee of a plane system is
proposed. The obtained solutions to these problems can be found by means of the
proposed algorithm.Comment: 29 pages, 2 figure
Convex Hull of Planar H-Polyhedra
Suppose are planar (convex) H-polyhedra, that is, $A_i \in
\mathbb{R}^{n_i \times 2}$ and $\vec{c}_i \in \mathbb{R}^{n_i}$. Let $P_i =
\{\vec{x} \in \mathbb{R}^2 \mid A_i\vec{x} \leq \vec{c}_i \}$ and $n = n_1 +
n_2$. We present an $O(n \log n)$ algorithm for calculating an H-polyhedron
with the smallest such that
Driven Disordered Periodic Media with an Underlying Structural Phase Transition
We investigate the driven states of a two-dimensional crystal whose ground
state can be tuned through a square-triangular transition. The depinning of
such a system from a quenched random background potential occurs via a complex
sequence of dynamical states, which include plastic flow states, hexatics,
dynamically stabilized triangle and square phases and intermediate regimes of
phase coexistence. These results are relevant to transport experiments in the
mixed phase of several superconductors which exhibit such structural
transitions as well as to driven colloidal systems whose interactions can be
tuned via surface modifications.Comment: Two-column, 4 pages, figures include
Generalized scans and tridiagonal systems
AbstractMotivated by the analysis of known parallel techniques for the solution of linear tridiagonal system, we introduce generalized scans, a class of recursively defined length-preserving, sequence-to-sequence transformations that generalize the well-known prefix computations (scans). Generalized scan functions are described in terms of three algorithmic phases, the reduction phase that saves data for the third or expansion phase and prepares data for the second phase which is a recursive invocation of the same function on one fewer variable. Both the reduction and expansion phases operate on bounded number of variables, a key feature for their parallelization. Generalized scans enjoy a property, called here protoassociativity, that gives rise to ordinary associativity when generalized scans are specialized to ordinary scans. We show that the solution of positive-definite block tridiagonal linear systems can be cast as a generalized scan, thereby shedding light on the underlying structure enabling known parallelization schemes for this problem. We also describe a variety of parallel algorithms including some that are well known for tridiagonal systems and some that are much better suited to distributed computation
Evaluating Signs of Determinants Using Single-Precision Arithmetic
We propose a method of evaluating signs of 2×2 and 3×3 determinants with b-bit integer entries using only b and (b + 1)-bit arithmetic, respectively. This algorithm has numerous applications in geometric computation and provides a general and practical approach to robustness. The algorithm has been implemented and compared with other exact computation methods
Topological defect motifs in two-dimensional Coulomb clusters
The most energetically favourable arrangement of low-density electrons in an
infinite two-dimensional plane is the ordered triangular Wigner lattice.
However, in most instances of contemporary interest one deals instead with
finite clusters of strongly interacting particles localized in potential traps,
for example, in complex plasmas. In the current contribution we study
distribution of topological defects in two-dimensional Coulomb clusters with
parabolic lateral confinement. The minima hopping algorithm based on molecular
dynamics is used to efficiently locate the ground- and low-energy metastable
states, and their structure is analyzed by means of the Delaunay triangulation.
The size, structure and distribution of geometry-induced lattice imperfections
strongly depends on the system size and the energetic state. Besides isolated
disclinations and dislocations, classification of defect motifs includes defect
compounds --- grain boundaries, rosette defects, vacancies and interstitial
particles. Proliferation of defects in metastable configurations destroys the
orientational order of the Wigner lattice.Comment: 14 pages, 8 figures. This is an author-created, un-copyedited version
of an article accepted for publication in J. Phys.: Condens. Matter. IOP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from it. The definitive
publisher-authenticated version is available online at
10.1088/0953-8984/23/38/38530
Query processing of spatial objects: Complexity versus Redundancy
The management of complex spatial objects in applications, such as geography and cartography,
imposes stringent new requirements on spatial database systems, in particular on efficient
query processing. As shown before, the performance of spatial query processing can be improved
by decomposing complex spatial objects into simple components. Up to now, only decomposition
techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have
been considered. In this paper, we will investigate the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of components, with respect to its effect on
efficient query processing. In particular, we present two new decomposition methods generating
a better balance between the complexity and the number of components than previously known
techniques. We compare these new decomposition methods to the traditional undecomposed representation
as well as to the well-known decomposition into convex polygons with respect to their
performance in spatial query processing. This comparison points out that for a wide range of query
selectivity the new decomposition techniques clearly outperform both the undecomposed representation
and the convex decomposition method. More important than the absolute gain in performance
by a factor of up to an order of magnitude is the robust performance of our new decomposition
techniques over the whole range of query selectivity
Experimental Evidence for Simple Relations between Unpolarized and Polarized Parton Distributions
The Pauli exclusion principle is advocated for constructing the proton and
neutron deep inelastic structure functions in terms of Fermi-Dirac
distributions that we parametrize with very few parameters. It allows a fair
description of the recent NMC data on and at
, as well as the CCFR neutrino data at and . We
also make some reasonable and simple assumptions to relate unpolarized and
polarized quark parton distributions and we obtain, with no additional free
parameters, the spin dependent structure functions and
. Using the correct evolution, we have checked that they
are in excellent agreement with the very recent SMC proton data at and the SLAC neutron data at .Comment: 17 pages,CPT-94/P.3032,latex,6 fig available on cpt.univ-mrs.fr
directory pub/preprints/94/fundamental-interactions /94-P.303
- …