176 research outputs found

    Gamma Limit for Transition Paths of Maximal Probability

    Get PDF
    Chemical reactions can be modelled via diffusion processes conditioned to make a transition between specified molecular configurations representing the state of the system before and after the chemical reaction. In particular the model of Brownian dynamics - gradient flow subject to additive noise - is frequently used. If the chemical reaction is specified to take place on a given time interval, then the most likely path taken by the system is a minimizer of the Onsager-Machlup functional. The Gamma limit of this functional is determined in the case where the temperature is small and the transition time scales as the inverse temperatur

    Kullback--Leibler approximation for probability measures on infinite dimensional spaces

    Get PDF
    In a variety of applications it is important to extract information from a probability measure μ\mu on an infinite dimensional space. Examples include the Bayesian approach to inverse problems and (possibly conditioned) continuous time Markov processes. It may then be of interest to find a measure ν\nu, from within a simple class of measures, which approximates μ\mu. This problem is studied in the case where the Kullback--Leibler divergence is employed to measure the quality of the approximation. A calculus of variations viewpoint is adopted, and the particular case where ν\nu is chosen from the set of Gaussian measures is studied in detail. Basic existence and uniqueness theorems are established, together with properties of minimizing sequences. Furthermore, parameterization of the class of Gaussians through the mean and inverse covariance is introduced, the need for regularization is explained, and a regularized minimization is studied in detail. The calculus of variations framework resulting from this work provides the appropriate underpinning for computational algorithms

    Kullback--Leibler approximation for probability measures on infinite dimensional spaces

    Get PDF
    In a variety of applications it is important to extract information from a probability measure μ\mu on an infinite dimensional space. Examples include the Bayesian approach to inverse problems and (possibly conditioned) continuous time Markov processes. It may then be of interest to find a measure ν\nu, from within a simple class of measures, which approximates μ\mu. This problem is studied in the case where the Kullback--Leibler divergence is employed to measure the quality of the approximation. A calculus of variations viewpoint is adopted, and the particular case where ν\nu is chosen from the set of Gaussian measures is studied in detail. Basic existence and uniqueness theorems are established, together with properties of minimizing sequences. Furthermore, parameterization of the class of Gaussians through the mean and inverse covariance is introduced, the need for regularization is explained, and a regularized minimization is studied in detail. The calculus of variations framework resulting from this work provides the appropriate underpinning for computational algorithms

    Thoracic hyperextension injury with complete “bony disruption” of the thoracic cage: Case report of a potentially life-threatening injury

    Get PDF
    BACKGROUND: Severe chest wall injuries are potentially life-threatening injuries which require a standardized multidisciplinary management strategy for prevention of posttraumatic complications and adverse outcome. CASE PRESENTATION: We report the successful management of a 55-year old man who sustained a complete “bony disruption” of the thoracic cage secondary to an “all-terrain vehicle” roll-over accident. The injury pattern consisted of a bilateral “flail chest” with serial segmental rib fractures, bilateral hemo-pneumothoraces and pulmonary contusions, bilateral midshaft clavicle fractures, a displaced transverse sternum fracture with significant diastasis, and an unstable T9 hyperextension injury. After initial life-saving procedures, the chest wall injuries were sequentially stabilized by surgical fixation of bilateral clavicle fractures, locked plating of the displaced sternal fracture, and a two-level anterior spine fixation of the T9 hyperextension injury. The patient had an excellent radiological and physiological outcome at 6 months post injury. CONCLUSION: Severe chest wall trauma with a complete “bony disruption” of the thoracic cage represents a rare, but detrimental injury pattern. Multidisciplinary management with a staged timing for addressing each of the critical injuries, represents the ideal approach for an excellent long-term outcome

    The success-index: an alternative approach to the h-index for evaluating an individual's research output

    Get PDF
    Among the most recent bibliometric indicators for normalizing the differences among fields of science in terms of citation behaviour, Kosmulski (J Informetr 5(3):481-485, 2011) proposed the NSP (number of successful paper) index. According to the authors, NSP deserves much attention for its great simplicity and immediate meaning— equivalent to those of the h-index—while it has the disadvantage of being prone to manipulation and not very efficient in terms of statistical significance. In the first part of the paper, we introduce the success-index, aimed at reducing the NSP-index's limitations, although requiring more computing effort. Next, we present a detailed analysis of the success-index from the point of view of its operational properties and a comparison with the h-index's ones. Particularly interesting is the examination of the success-index scale of measurement, which is much richer than the h-index's. This makes success-index much more versatile for different types of analysis—e.g., (cross-field) comparisons of the scientific output of (1) individual researchers, (2) researchers with different seniority, (3) research institutions of different size, (4) scientific journals, etc

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles

    Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation

    Get PDF
    We have used the locally self-consistent Green's function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine the Madelung potential energy of a random alloy in the single-site mean field approximation which makes the conventional single-site density-functional- theory coherent potential approximation (SS-DFT-CPA) method practically identical to the supercell LSGF method with a single-site local interaction zone that yields an exact solution of the DFT problem. We demonstrate that the basic mechanism which governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short-ranged. In the atomic sphere approximation, this screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-filed approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure
    • …
    corecore