2,047 research outputs found

    Possible Explanation to Low CMB Quadrupole

    Full text link
    The universe might experience many cycles with different vacua. The slow-roll inflation may be preceded by kinetic-dominated contraction occurring in "adjacent" vacua during some cycles. In this report we briefly show this phenomenon may lead to a cutoff of primordial power spectrum. Thus in some sense the CMB at large angular scale might encode the information of other vacua.Comment: 10 pages, 3 eps figures, accepted for publication in PRD, v2 revised with published versio

    Scalar Perturbations Through Cycles

    Full text link
    We analytically and numerically investigate the evolutions of the scalar perturbations through the cycles with nonsingular bounce. It is found that the amplitude of the curvature perturbation on large scale will be amplified cycle by cycle, and the isocurvature perturbations also obtain an amplification, but the rate of its amplification is slower than that of curvature perturbation, unless its coupling to the metric perturbation is not negligible.Comment: 7 pages, 10 figure

    Prevalence of the metabolic syndrome in Chinese adolescents

    Get PDF
    Since national figures on the occurrence of metabolic syndrome among Chinese adolescents are lacking, this study aims to estimate its prevalence and distribution among Chinese youngsters. The 2002 China National Nutrition and Health Survey is a nationally representative cross-sectional study. Applying the criteria for US adolescents, we estimated the prevalence of metabolic syndrome among 2761 adolescents aged 15 to 19 years. The prevalence of metabolic syndrome among Chinese adolescents overall was 3·7% (10% in US adolescents). It was 35·2 %, 23·4% and 2·3% among adolescents who were overweight (BMI 95thpercentile),atriskofoverweight(BMIbetween85thand95thpercentile)andnormalweight(BMIbelowthe85thpercentile),respectively.Urbanboyshadthehighestrate(5⋅895th percentile), at risk of overweight (BMI between 85th and 95th percentile) and normal weight (BMI below the 85th percentile), respectively. Urban boys had the highest rate (5·8 %) compared with girls and rural youngsters. Among adolescents who had a BMI 85th percentile and one or two parent(s) with metabolic syndrome, the prevalence was 46·4 %. A total of 96% of overweight adolescents had at least one and 74·1% overweight adolescents had at least two abnormalities of metabolic syndrome. Based on these figures, it is estimated that more than three million Chinese adolescents have metabolic syndrome. Both overweight and metabolic syndrome prevalence among adolescents are still relatively low in China, but the prevalence of metabolic syndrome among Chinese overweight adolescents is similar to those living in the USA

    USCID fourth international conference

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.Includes bibliographical references.This paper covers considerations in VFD applications, plus details a study performed by the Irrigation Training and Research Center (ITRC) to determine motor performances under varying speeds (controlled by a VFD) and loads

    Theoretical Modeling and Experimental Analyses of Laminated Wood Composite Poles

    Get PDF
    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel engineered wood product. A higher-order governing differential equation (GDE) model was developed for this purpose based on the principle of minimum potential energy. Transverse shear and glue-line effects were taken into account in the development of the model. A simplified theoretical model was also derived to further validate the higher-order GDE model. Thirty-six small-scale wood laminated composite poles were made and tested to validate the models developed. Strip thickness and number of strips were chosen as experimental variables. The deflection predicted by the theoretical models agreed well with those measured in experiment. The agreement with the results predicted by the simplified theoretical model was better than that with those predicted by the higher-order GDE model

    Finite Element Modeling of Small-Scale Tapered Wood-Laminated Composite Poles with Biomimicry Features1

    Get PDF
    Tapered composite poles with biomimicry features as in bamboo are a new generation of wood laminated composite poles that may some day be considered as an alternative to solid wood poles that are widely used in the transmission and telecommunication fields. Five finite element models were developed with ANSYS to predict and assess the performance of five types of composites members: a tapered hollow pole with webs (Pole-A), a tapered hollow pole without webs (Pole-B), a tapered solid composite pole (Pole-C), a uniform-diameter hollow pole with webs (Pole-D), and a uniform-diameter hollow pole without webs (Pole-E). The predicted deflection by these models agreed well with those of the experiment, and the predicted normal stress agreed with those calculated. The normal and shear stress distributions inside the members were investigated, and stress distributions in the XY and YZ planes are exhibited. As expected, the webs reduced the local shear stress and improved shear capacity, especially in the top and groundline regions where shear levels were the highest. The webs had little effect on the normal stress. Shear stress increased from the bottom to the top for the members with taper. Large shear stress concentration was predicted in a small region close to the groundlines. The models also predicted that the shear stress of the tapered hollow poles would decrease from the inside to the outside surfaces in XY plane

    Cyclic cosmology from Lagrange-multiplier modified gravity

    Full text link
    We investigate cyclic and singularity-free evolutions in a universe governed by Lagrange-multiplier modified gravity, either in scalar-field cosmology, as well as in f(R)f(R) one. In the scalar case, cyclicity can be induced by a suitably reconstructed simple potential, and the matter content of the universe can be successfully incorporated. In the case of f(R)f(R)-gravity, cyclicity can be induced by a suitable reconstructed second function f2(R)f_2(R) of a very simple form, however the matter evolution cannot be analytically handled. Furthermore, we study the evolution of cosmological perturbations for the two scenarios. For the scalar case the system possesses no wavelike modes due to a dust-like sound speed, while for the f(R)f(R) case there exist an oscillation mode of perturbations which indicates a dynamical degree of freedom. Both scenarios allow for stable parameter spaces of cosmological perturbations through the bouncing point.Comment: 8 pages, 3 figures, references added, accepted for publicatio

    Inflationary universe in loop quantum cosmology

    Full text link
    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.Comment: 21 pages, 4 figures; accepted for publication in JCA

    A note on Tachyon dynamics

    Full text link
    A suitable splitting of tachyon field equation is able to disclose non trivial properties of Born-Infeld (some known, some unexpected) and Polyakov actions; the tachyon equation also can be analyzed in some detail. The analysis displays an intriguing connection between sine-Gordon theory and some crucial issues such as the emergence of perturbative string states when a D-Brane and an anti-D-Brane annihilate and the confinement of charged D-Branes.Comment: 11 pages, no figures, to be published on Physics Letters

    The Primordial Perturbation Spectrum from Various Expanding and Contracting Phases

    Full text link
    In this paper, focusing on the case of single scalar field, we discuss various expanding and contracting phases generating primordial perturbations, and study the relation between the primordial perturbation spectrum from these phases and the parameter w of state equation in details. Furthermore, we offer an interesting classification for the primordial perturbation spectrum from various phases, which may have important implications for building an early universe scenario embedded in possible high energy theories.Comment: 5 pages, 3 eps figure
    • …
    corecore