43 research outputs found

    Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics

    Get PDF
    Plasmonic hot-electron devices are attractive candidates for light-energy harvesting and photodetection applications. For solid state devices, the most compact and straightforward architecture is the metalsemiconductor Schottky junction. However convenient, this structure introduces limitations such as the elevated dark current associated to thermionic emission, or constraints for device design due to the finite choice of materials. In this work we theoretically consider the metalinsulator-semiconductor heterojunction as a candidate for plasmonic hotcarrier photodetection and solar cells. The presence of the insulating layer can significantly reduce the dark current, resulting in increased device performance with predicted solar power conversion efficiencies up to 9%. For photodetection, the sensitivity can be extended well into the infrared by a judicious choice of the insulating layer, with up to 300-fold expected enhancement in detectivity.Peer ReviewedPostprint (published version

    Large-Area Plasmonic-Crystal−Hot-Electron-Based Photodetectors

    Get PDF
    In view of their exciting optoelectronic light− matter interaction properties, plasmonic−hot-electron devices have attracted significant attention during the last few years as a novel route for photodetection and light-energy harvesting. Herein we report the use of quasi-3D large-area plasmonic crystals (PC) for hot-electron photodetection, with a tunable response across the visible and near-infrared. The strong interplay between the different PC modes gives access to intense electric fields and hot-carrier generation confined to the metal− semiconductor interface, maximizing injection efficiencies with responsivities up to 70 mA/W. Our approach, compatible with large-scale manufacturing, paves the way for the practical implementation of plasmonic−hot-electron optoelectronic devices.Peer ReviewedPostprint (published version

    Inorganic Tin Perovskites with Tunable Conductivity Enabled by Organic Modifiers

    Full text link
    Achieving control over the transport properties of charge-carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: The perovskite structure itself, poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI3) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead free, thermoelectric material with a near room-temperature figure-of-merit (ZT) of 0.21, the highest amongst all halide perovskite thermoelectrics. Our strategy provides an additional degree of freedom in the design of halide perovskites for optoelectronic and energy applications

    Advances in solution-processed near-infrared light-emitting diodes

    Get PDF
    Near-infrared light-emitting diodes based on solution-processed semiconductors, such as organics, halide perovskites and colloidal quantum dots, have emerged as a viable technological platform for biomedical applications, night vision, surveillance and optical communications. The recently gained increased understanding of the relationship between materials structure and photophysical properties has enabled the design of efficient emitters leading to devices with external quantum efficiencies exceeding 20%. Despite considerable strides made, challenges remain in achieving high radiance, reducing efficiency roll-off and extending operating lifetime. This Review summarizes recent advances on emissive materials synthetic methods and device key attributes that collectively contribute to improved performance of the fabricated light-emitting devices

    Solution-processed semiconductors for next-generation photodetectors

    Get PDF
    Efficient light detection is central to modern science and technology.Current photodetectors mainly use photodiodes based on crystalline inorganic elementalsemiconductors, such as silicon, or compounds such as III–V semiconductors. Photodetectorsmade of solution-processed semiconductors — which include organic materials, metal-halideperovskites and quantum dots — have recently emerged as candidates for next-generation lightsensing. They combine ease of processing, tailorable optoelectronic properties, facile integrationwith complementary metal–oxide–semiconductors, compatibility with flexible substrates andgood performance. Here, we review the recent advances and the open challenges in the field ofsolution-processed photodetectors, examining the topic from both the materials and the deviceperspective and highlighting the potential of the synergistic combination of materials and deviceengineering. We explore hybrid phototransistorsand their potential to overcome trade-offsin noise, gain and speed, as well as the rapid advances in metal-halide perovskite photodiodesand their recent application in narrowband filterless photodetection

    Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics

    No full text
    Plasmonic hot-electron devices are attractive candidates for light-energy harvesting and photodetection applications. For solid state devices, the most compact and straightforward architecture is the metalsemiconductor Schottky junction. However convenient, this structure introduces limitations such as the elevated dark current associated to thermionic emission, or constraints for device design due to the finite choice of materials. In this work we theoretically consider the metalinsulator-semiconductor heterojunction as a candidate for plasmonic hotcarrier photodetection and solar cells. The presence of the insulating layer can significantly reduce the dark current, resulting in increased device performance with predicted solar power conversion efficiencies up to 9%. For photodetection, the sensitivity can be extended well into the infrared by a judicious choice of the insulating layer, with up to 300-fold expected enhancement in detectivity.Peer Reviewe
    corecore