8 research outputs found

    Enhancement of anticancer activity by silibinin and paclitaxel combination on the ovarian cancer

    No full text
    Background: Ovarian carcinoma is the most lethal cancer among all gynaecological malignancies. One of the most chemotherapy drugs used for ovarian cancer is paclitaxel which induces apoptosis. Paclitaxel has been used for many years. Similar to the most cancers this responds to chemotherapy initially but in a long run, drug resistance happens which fails the treatment procedure. Combination of chemotherapy drugs has been suggested to deal with this issue. Silibinin, a plant extraction, has been used from ancient time in traditional medicine and identified to have powerful antioxidant activity. Aim: The aim of this study was to examine the effect of paclitaxel and silibinin combination on SKOV-3 cancer cell line. Materials and methods: The human epithelial ovarian cancer cell line, SKOV-3, was cultured and treated with paclitaxel, silibinin and paclitaxel plus silibinin for 48 hours. MTT assay was carried out to determine cell viability. For apoptotic process, we used real-time PCR to study P53 and P21 genes expression after drug treatment and network analysis was performed using Pathway Studio web tool (Elsevier). Results: Cell growth was inhibited considerably (p <.05) by combination of paclitaxel and silibinin after 48 hours of treatment. Also silibinin and paclitaxel combination induced apoptosis in SKOV-3 cells. Expression analysis by real-time PCR showed the significant up-regulation of two tumour suppressor genes, P53 and P21 in response to combination of silibinin and paclitaxel. In addition, computational network analysis demonstrated the crosstalk between paclitaxel, silibinin and ovarian cancer. Conclusions: Our results showed that combination of chemotherapy drugs of silibinin and paclitaxel can be more efficient in treatment of ovarian cancer cells. © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group

    Enhancement of anticancer activity by silibinin and paclitaxel combination on the ovarian cancer

    No full text
    Background: Ovarian carcinoma is the most lethal cancer among all gynaecological malignancies. One of the most chemotherapy drugs used for ovarian cancer is paclitaxel which induces apoptosis. Paclitaxel has been used for many years. Similar to the most cancers this responds to chemotherapy initially but in a long run, drug resistance happens which fails the treatment procedure. Combination of chemotherapy drugs has been suggested to deal with this issue. Silibinin, a plant extraction, has been used from ancient time in traditional medicine and identified to have powerful antioxidant activity. Aim: The aim of this study was to examine the effect of paclitaxel and silibinin combination on SKOV-3 cancer cell line. Materials and methods: The human epithelial ovarian cancer cell line, SKOV-3, was cultured and treated with paclitaxel, silibinin and paclitaxel plus silibinin for 48 hours. MTT assay was carried out to determine cell viability. For apoptotic process, we used real-time PCR to study P53 and P21 genes expression after drug treatment and network analysis was performed using Pathway Studio web tool (Elsevier). Results: Cell growth was inhibited considerably (p <.05) by combination of paclitaxel and silibinin after 48 hours of treatment. Also silibinin and paclitaxel combination induced apoptosis in SKOV-3 cells. Expression analysis by real-time PCR showed the significant up-regulation of two tumour suppressor genes, P53 and P21 in response to combination of silibinin and paclitaxel. In addition, computational network analysis demonstrated the crosstalk between paclitaxel, silibinin and ovarian cancer. Conclusions: Our results showed that combination of chemotherapy drugs of silibinin and paclitaxel can be more efficient in treatment of ovarian cancer cells. © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group

    Legionella Pneumophila and Dendrimers-Mediated Antisense Therapy

    Get PDF
    Finding novel and effective antibiotics for treatment of Legionella disease is a challenging field. Treatment with antibiotics usually cures Legionella infection; however, if the resultant disease is not timely recognized and treated properly, it leads to poor prognosis and high case fatality rate. Legionella pneumophila DrrA protein (Defects in Rab1 recruitment protein A)/also known as SidM affects host cell vesicular trafficking through modification of the activity of cellular small guanosine triphosphatase )GTPase( Rab (Ras-related in brain) function which facilitates intracellular bacterial replication within a supporter vacuole. Also, Legionella pneumophila LepA and LepB (Legionella effector protein A and B) proteins suppress host-cell Rab1 protein's function resulting in the cell lysis and release of bacteria that subsequently infect neighbour cells. Legionella readily develops resistant to antibiotics and, therefore, new drugs with different modes of action and therapeutic strategic approaches are urgently required among antimicrobial drug therapies;gene therapy is a novel approach for Legionnaires disease treatment. On the contrary to the conventional treatment approaches that target bacterial proteins, new treatment interventions target DNA (Deoxyribonucleic acid), RNA (Ribonucleic acid) species, and different protein families or macromolecular complexes of these components. The above approaches can overcome the problems in therapy of Legionella infections caused by antibiotics resistance pathogens. Targeting Legionella genes involved in manipulating cellular vesicular trafficking using a dendrimer-mediated antisense therapy is a promising approach to inhibit bacterial replication within the target cells

    Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine

    No full text
    corecore