89 research outputs found

    Activation of Sirt1 by Resveratrol Inhibits TNF-α Induced Inflammation in Fibroblasts

    Get PDF
    Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases

    Resveratrol Inhibits Protein Translation in Hepatic Cells

    Get PDF
    Resveratrol is a plant-derived polyphenol that extends lifespan and healthspan in model organism. Despite extensive investigation, the biological processes mediating resveratrol's effects have yet to be elucidated. Because repression of translation shares many of resveratrol's beneficial effects, we hypothesized that resveratrol was a modulator of protein synthesis. We studied the effect of the drug on the H4-II-E rat hepatoma cell line. Initial studies showed that resveratrol inhibited global protein synthesis. Given the role of the mammalian Target of Rapamycin (mTOR) in regulating protein synthesis, we examined the effect of resveratrol on mTOR signaling. Resveratrol inhibited mTOR self-phosphorylation and the phosphorylation of mTOR targets S6K1 and eIF4E-BP1. It attenuated the formation of the translation initiation complex eIF4F and increased the phosphorylation of eIF2α. The latter event, also a mechanism for translation inhibition, was not recapitulated by mTOR inhibitors. The effects on mTOR signaling were independent of effects on AMP-activated kinase or AKT. We conclude that resveratrol is an inhibitor of global protein synthesis, and that this effect is mediated through modulation of mTOR-dependent and independent signaling

    Current and Future Drug Targets in Weight Management

    Get PDF
    Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investigated. However, pharmacological modulation of body weight is extremely complex, since it is essentially a battle against one of the strongest human instincts and highly efficient mechanisms of energy uptake and storage. This review provides an overview of the different molecular strategies intended to lower body weight or adipose tissue mass. Weight-loss drugs in development include molecules intended to reduce the absorption of lipids from the GI tract, various ways to limit food intake, and compounds that increase energy expenditure or reduce adipose tissue size. A number of new preparations, including combinations of the existing drugs topiramate plus phentermine, bupropion plus naltrexone, and the selective 5-HT2C agonist lorcaserin have recently been filed for approval. Behind these leading candidates are several other potentially promising compounds and combinations currently undergoing phase II and III testing. Some interesting targets further on the horizon are also discussed

    Substrates for Efficient Fluorometric Screening Employing the NAD-Dependent Sirtuin 5 Lysine Deacylase (KDAC) Enzyme

    Get PDF
    The class III lysine deacylases (KDACs), also known as the sirtuins, have emerged as interesting drug targets for therapeutic intervention in a variety of diseases. To gain a deeper understanding of the processes affected by sirtuins, the development of selective small molecule modulators of individual isozymes has been a longstanding goal. Essential for the discovery of novel modulators, however, are good screening protocols and mechanistic insights with regard to the targets in question. We therefore evaluated the activities of the seven human sirtuin hydrolases against a panel of fluorogenic substrates. Both commonly used, commercially available substrates and novel chemotypes designed to address recent developments in the field of lysine post-translational modification were evaluated. Our investigations led to the discovery of two new fluorogenic ε-N-succinyllysine-containing substrates that enable highly efficient and enzyme-economical screening employing sirtuin 5 (SIRT5). Furthermore, optimized protocols for facile kinetic investigations were developed, which should be valuable for enzyme kinetic investigations. Finally, these protocols were applied to a kinetic analysis of the inhibition of SIRT5 by suramin, a potent sirtuin inhibitor previously shown by X-ray crystallography to bind the substrate pocket of the human SIRT5 KDAC enzyme

    Sirtuin Deacetylases as Therapeutic Targets in the Nervous System

    Get PDF

    A new method of screening for inherited disorders of galactose metabolism.

    No full text
    A method has been developed for detecting elevated levels of galactose and galactose-1-phosphate in routine blood samples of newborns and has been successfully applied as a screening procedure for galactosemia in several laboratories. The procedure utilizes a strain of Escherichia coli that becomes resistant to bacteriophage C21 in the presence of galactose. The presence of galactose or galactose-1-phosphate is detected as a zone of bacterial growth around blood spots placed on a dish in which the bacteria are otherwise killed by phage. The diameter of the growth zone is proportional to the concentration of total blood galactose. The procedure has the potential of detecting all metabolic abnormalities that can lead to the accumulation of galactose or galactose-1-phosphate. Over a million newborn infants have now been tested by this procedure in three countries. In the New England Regional Screening Program, 12 galactosemic children were detected in 825,403 live births. One additional case, a sibling of a previously diagnosed galactosemic, was not allowed any milk feeding and was detected by an enzymatic test of cord blood. The combined frequency was 1:63,000. No problems of interference by antibiotics were apparent. Use of the test in Switzerland and in Japan also allowed the discovery of infants with UDP galactose 4-epimerase deficiency. Our experience suggests that the test provides an efficient and reliable means of detecting congenital defects of galactose metabolism with a very low frequency of errors. It can also be used to monitor blood galactose levels in the management of galactosemic children
    • …
    corecore