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Abstract Sirtuins are a conserved family of deacetylases
whose activities are dependent on nicotinamide adenine dinu-
cleotide (NAD+). Sirtuins act in different cellular compart-
ments, such as the nucleus where they deacetylate histones
and transcriptional factors, in the cytoplasm where they mod-
ulate cytoskeletal and signaling molecules, and in the mito-
chondria where they engage components of the metabolic
machinery. Collectively, they tune metabolic processes to
energy availability, and modulate stress responses, protein
aggregation, inflammatory processes, and genome stability.
As such, they have garnered much interest and have been
widely studied in aging and age-related neurodegeneration.
In this chapter, we review the identification of sirtuins and
their biological targets. We focus on their biological mecha-
nisms of action and how they might be regulated, including
via NAD metabolism, transcriptional and posttranscrip-
tional control, and as targets of pharmacological agents.
Lastly, we highlight the numerous studies suggesting that
sirtuins are efficacious therapeutic targets in neurodegenera-
tive disease and injury.
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Introduction

Proteins may undergo posttranslational modifications to alter
their activity, interaction with other proteins, or structural
conformation. One such modification is the acetylation of
lysine residues, mediated by the enzymatic activities of
acetyltransferases [1, 2]. In contrast to acetylation, the removal
of these acetyl groups, deacetylation, is carried out by a group
of enzymes called deacetylases. This group of deacetylases is
also referred to as histone deacetylases (HDACs) due to their
capacity for deacetylating histone proteins, predominantly the
ε-amino groups of specific lysines in N-terminal domains of
histone H3 and histone H4 [3, 4]. The deacetylation of histone
proteins within chromatin generally correlates with a more
compacted and transcriptionally silent state [5, 6].

Deacetylases are classified into four families in mammals,
many of which are conserved from yeast to humans. Class I
HDACs are ubiquitously expressed and have high sequence
similarity to yeast Rpd3, and include HDAC-1, HDAC-2,
HDAC-3 and HDAC-8. Class II HDACs are expressed primar-
ily in striated muscle and brain, are similar to yeast Hda1, and
include HDAC-4, HDAC-5, HDAC-6, HDAC-7 and HDAC9
[3, 4]. Class III contains the sirtuin family of HDACs. They are
similar to yeast Sir2, and include SIRT1 to SIRT7 [7]. The last
group is class IV, which contains the solitary member, HDAC
11 [8]. The active sites of class I, II, and IVHDACs have a high
degree of sequence similarity, and have a common zinc-
dependent mechanism for deacetylation. In contrast to this,
the class III HDACs, or sirtuins, differ in that they require
nicotinamide adenine dinucleotide (NAD+) for catalysis [9].
As such, they are also referred to as the NAD+-dependent
histone deacetylases.

Sirtuins were first identified in Saccharomyces cerevisiae
as genetic silencing factors in which they were found to
participate in heterochromatic silencing at mating-type loci
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[10, 11]. Later, in longevity studies, it was discovered that the
silent information regulation (Sir) genes, particularly Sir2,
were determinants of calorie induced replicative lifespan ex-
tension in S . cerevisiae , and that increased Sir2 or loss of Sir2
extend or reduced lifespan in wild-type cells, respectively [12,
13]. The role of Sir2 in this action was linked to its ability to
suppress recombination in the rDNA region and consequently
reduce the formation of extrachromosomal rDNA circles [12,
13]. In parallel, Sir2 was found to be NAD+-dependent
deacetylase for histone proteins, consistent with its capacity
for gene silencing, recombination suppression, and life span
extension [14]. Given that calorie restriction induced lifespan
elongation and appears to be a phylogenetically conserved
phenomenon, observed in yeast, worm, fruit fly and rodents,
these early findings have generated intense interest and re-
search effort [12, 13, 15–17].

As discussed, seven sirtuins have been identified to date in
mammals: SIRT1–SIRT7. Together they share significant
homology in structure, particularly in their highly conserved
catalytic and NAD+-binding domains [7]. Despite this, they
have very distinct enzymatic activities, expression patterns,
cellular localizations, and biological function (Table 1).
SIRT1 is robust deacetylase that contains both nuclear
localization and export sequences. It is predominantly local-
ized in the nucleus, though studies have reported it as a
nucleocytoplasmic shuttling protein [18–20]. Although the
physiological relevance of this shuttling is unclear, it is possi-
ble that SIRT1 has either important cytosolic targets or that
shuttling is another level of control on nuclear target proteins.
SIRT2 is a robust deacetylase with a cytosolic localization
[21–23]. However, it has been identified in the nucleus during
the G2 to M phase transition of the cell cycle [22]. SIRT3,
SIRT4 and SIRT5 are all mitochondrial sirtuins containing
mitochondrial-targeting sequences [24–28]. Of these, SIRT3
is a robust deacetylase [28, 29], whereas SIRT4 and SIRT5
display weak deacetylase activity on substrates tested so far.
Rather, SIRT4 appears to be better ADP-ribosyltransferases
[30], and SIRT5 a very effective demalonylase and

desuccinylase [24, 31]. SIRT6 and SIRT7 are both predomi-
nantly localized in the nucleus [32–34]. Both display weak
deacetylase activity, and SIRT6, like SIRT4, displays ADP-
ribosyltransferase activity [32, 33].

Biological Targets of Sirtuin Activity

SIRT1

SIRT1 is the closest homolog of yeast Sir2, and the most-
studied member of the mammalian sirtuin family.While it was
originally described to deacetylate histone proteins [35], many
non-histone targets have been identified for SIRT1, including
forkhead box O (FoxO) transcription factors [36–38], perox-
isome proliferator-activated receptor-γ co-activator 1α
(PGC1α) [39], p53 [40, 41], and p300 [42]. Collectively, the
enzymatic deacetylating activity of SIRT1 on these substrates
appears to be important for metabolic adjustment, survival
promotion, genome stability and autophagy, all of which are
consistent with longevity. For example, both calorie restriction
and cellular stress have been shown to facilitate binding, and
subsequent deacetylation of FoxO3a by SIRT1 [36–38]. FoxO
transcription factors are downstream targets of the insulin-
phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway
and are important regulators of cell fate, due to their ability to
control proliferation, differentiation, apoptosis, DNA repair,
and defense against oxidative stress [43]. However, findings
suggest that SIRT1-mediated deacetylation does not just
activate or inhibit the FoxO3a but selectively directs it
to certain targets, thus functions of FoxO3a, such as
cell-cycle arrest and oxidative-stress resistance, can be
enhanced while other functions, such as cell death are
inhibited [36–38]. Another target of SIRT1 is the transcription
factor PGC1α. SIRT1 deacetylation of PGC1α leads to its
activation and to the induction of mitochondrial gene expres-
sion and downstream pathways that enhance mitochondrial
biogenesis and activity [39, 44].

Table 1 Mammalian sirtuin lo-
calization and function Sirtuin Localization Activity Examples of targets

SIRT1 Nucleus Deacetylase Histones [35], FoxO [36–38], PGC1α [39], p53
[41, 42], p300 [42], etc.

SIRT2 Cytoplasm Deacetylase α-Tubulin [23], FoxO [46, 47], PEPCK1 [49]

SIRT3 Mitochondria Deacetylase ACS2 [50], LCA [52], HMGCS2 [53], GDH [31],
IDH2 [54], Ornithine transcarbamylase [50]

SIRT4 Mitochondria ADP-ribosyltransferase GDH [25]

SIRT5 Mitochondria Demalonylase desuccinylase CPS1 [27]

SIRT6 Nucleus Weak deacetylase ADP-
ribosyltransferase

Histones [57], PARP1 [59], Hif1α [60]

SIRT7 Nucleus Weak deacetylase Histones [62], p53 [61], Hif1α and Hif2α [63]
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Several studies using mouse models provide evidence that
SIRT1 may improve genetic stability and suppress tumor
formation. SIRT1 null mice die perinatally due to develop-
mental defects including chromosome abnormalities. The
cause behind this genomic instability has been attributed to a
defective signaling of DNA double-strand breaks (DSBs)
since SIRT1 deacetylation of the repair factor NBS1 is a
modification required for its subsequent phosphorylation by
the Ataxia Telangiectasia Mutated (ATM) kinase in the first
steps of the DNA damage response [45–47]. Furthermore,
SIRT1 appears to be involved in multiple DNA-repair path-
ways, including homologous recombination (HR) repair or
non-homologous end joining (NHEJ) of double strand breaks,
and nucleotide excision repair (NER) of DNA single strand
breaks [48–50]. The tumor suppressor, p53, which is induced
in response to cellular stress, including oxidative and DNA
damage, is also a target of SIRT1. In coordination with other
cellular targets, SIRT1 can deacetylate p53, repressing its
function, reducing its proapoptotic effects and promoting
survival [40, 41]. Thus, it appears that SIRT1 has evolved to
coordinate both proper genomic integrity and adequate meta-
bolic adaptation, in this way allowing cells to adapt against
stress.

SIRT2

In mammals, SIRT2 is primarily present in the cytoplasm,
where it co-localizes with microtubules and deacetylates the
major component of microtubules,α-tubulin at lysine 40 [23].
However, SIRT2 has been found to transiently migrate to the
nucleus during G2/M transition and deacetylate histone H4 at
lysine 16, thereby modulating chromatin condensation during
metaphase [51]. SIRT2, like SIRT1, can also deacetylate the
FoxO transcription factors, FoxO1 and FoxO3a [52, 53],
potentially linking its multiple cellular processes, including
DNA repair, cell cycle, apoptosis, metabolism and ageing
[54]. Another metabolic target of SIRT2 is phosphoenolpyr-
uvate carboxykinase 1 (PEPCK1), the deacetylation of which
prevents its ubiquitylation-dependent degradation [55]. Given
that PEPCK1 is the rate-limiting enzyme in gluconeogenesis,
deacetylation by SIRT2 serves to modulate cellular responses
to glucose. SIRT2 has both roles in tumor suppression and
promotion. SIRT2 is reported to be a tumor suppressor in
several cancers [56, 57]. Direct support of SIRT2’s tumor
suppressor role is demonstrated in studies showing that
SIRT2 knock-out mice develop tumors in various organs
due to abnormal chromosomal segregation and aneuploidy
caused by increased expression of mitotic regulators including
aurora kinases [58]. However, SIRT2 may promote oncogenic
phenotypes. SIRT2 is increased in acute myeloid leukemia
cells compared with normal bone marrow cells, and SIRT2
inhibition causes apoptosis of acute myeloid leukemia cells
in vitro [59].

SIRT3, 4 and 5

SIRT3, SIRT4 and SIRT5 localize to, and function, primarily in
the mitochondria. SIRT3 was first discovered to deacetylate and
activate acetyl-CoA synthetase 2 (ACS2) [60], an enzyme that
converts free acetate to acetyl-CoA, which can be oxidized in
the citric acid cycle (TCA cycle) to produce energy.
Subsequently, SIRT3 has been found to engage and regulate
multiple metabolic components of the TCA cycle, fatty acid
oxidation, and oxidative phosphorylation [61]. In particular, it
has been shown to deacetylate and activate long-chain acyl–
CoA dehydrogenase (LCAD) [62], 3-hydroxy-3-methyl-
glutaryl–CoA synthase 2 (HMGCS2) [63], and glutamate dehy-
drogenase (GDH) [31]. As a result of SIRT3 deacetylation,
LCAD, HMGCS2, and GDH promote fatty-acid oxidation, the
formation of ketone body by-products from acetyl-CoA, and α-
ketoglutarate from the amino acid glutamate, respectively [31,
62, 63]. SIRT3 also deacetylates superoxide dismutase-2
(SOD2), which is important for oxygen detoxification [64],
and mitochondrial matrix protein isocitrate dehydrogenase 2
(IDH2), which through its oxidative decarboxylation of
isocitrate to α-ketoglutarate is a major source of NADPH [65,
66]. Through these functions, SIRT3 is suggested to suppress
reactive oxygen species (ROS) production, which promotes
oxygen-dependent prolyl-hydroxylase domain-containing en-
zyme (PHD) activity and destabilizes the hypoxia-inducible
factor, HIF1α [67]. SIRT3 is also important for the deacetylation
and activation of ornithine transcarbamylase, a key compo-
nent of the urea cycle, which is important for preventing the
toxic build-up of ammonia from amino acid catabolism [60].
Thus taken together, it is hypothesized that SIRT3 is impor-
tant for promoting metabolic processes and detoxification
that are characteristic of a fasting state when activated by
low nutrient levels.

SIRT4 is another mitochondrial sirtuin that primarily ap-
pears to have functions in metabolism. The first role identified
for SIRT4was the ADP-ribosylation of GDH, which represses
its enzymatic activity and limits the metabolism of glutamate
and glutamine to generate ATP [25]. Consistent with gluta-
mate and glutamine promoting pancreatic β cells secretion of
insulin via metabolism byGDH, the deletion of SIRT4 inmice
results in a loss of regulated insulin secretion [25]. Thus, it is
hypothesized that ADP-ribosylation of GDH may coordinate
amino acid metabolism in different tissues with changes in
diet. SIRT4 has also been reported to play a role in the
regulation mitochondrial oxidative metabolism in hepatocytes
and myocytes. In a study by Nasrin et al. [68], the genetic
knockdown of SIRT4 was associated with the enhanced ex-
pression of genes that control fatty acid oxidation and mito-
chondrial oxidative capacity. However, this may be SIRT1
and SIRT3 mediated as both are increased with SIRT4 knock-
down, and fatty acid oxidation enhancement is lost when
SIRT1 is inhibited. Recent findings suggest that SIRT4 also
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plays a tumor suppressor role. SIRT4 is induced by genotoxic
stress and is required for the repression of mitochondrial
glutamine metabolism which contributes to the control of cell
cycle progression and the maintenance of genomic integrity in
response to DNA damage [69]. Indeed, loss of SIRT4 in-
creased glutamine-dependent tumor cell proliferation and tu-
morigenesis. In mice, SIRT4 loss resulted in spontaneous
tumor development [69].

So far, the only target described for SIRT5 deacetylase
activity is carbamoyl phosphate synthetase 1 (CPS1), which
is deacetylated and thereby activated to regulate entry into the
urea cycle and promote ammonia detoxification during amino
acid catabolism [27]. Given SIRT5’s weak deacetylase activ-
ity it is possible that it does not primarily act as a deacetylase
for CPS1, but rather a desuccinylase [24]. Indeed, pyruvate
dehydrogenase complex (PDC) and succinate dehydrogenase
(SD) have been determined to be lysine desuccinylation tar-
gets of SIRT5, a modification that suppresses their biochem-
ical activities and, consequently, mitochondrial respiration
driven by these complexes [70].

SIRT6

Studies have demonstrated a link between SIRT6 expression
and longevity, in which the overexpression of SIRT6 extends
the lifespan of male mice [71]. In this study, SIRT6
overexpression lowered serum levels of insulin-like growth
factor 1 (IGF1) and increased the expression of insulin-like
growth factor-binding protein 1 in male mice, bringing the
values closer to those observed in control female mice [71].
Our understanding of SIRT6 function also comes from its
deletion in mice, which results in genomic instability, meta-
bolic defects and degenerative pathologies associated with
aging [34, 72]. SIRT6 mainly resides in the nucleus where it
has been shown to specifically bind to the telomeric chromatin
and deacetylate histone H3 at lysines 9 to modulate telomeric
chromatin structure [73]. Loss of SIRT6 can lead to the
dysfunction of telomeres similar to that of Werner syndrome,
and can result in chromosome end fusion and cellular senes-
cence [73]. With regard to DNA damage repair, SIRT6 has
been implicated in the regulation of base excision repair
(BER) either by modulating BER factors or regulating the
density of chromatin thereby changing the accessibility of
DNA damage sites to BER factors [34]. Studies suggest
SIRT6 also impacts DNA double-strand break (DSB) repair
by stabilizing DNA dependent protein kinase on the chroma-
tin and facilitate its joining [74]. Lastly, SIRT6 has been
shown to mono-ADP-ribosylate PARP1, thereby activating
PARP1’s poly-ADP-ribosylase activity and enhancing DSB
repair under conditions of oxidative stress [75]. In contrast to
genome stability and DNA damage repair, studies on the
metabolic defects in SIRT6 knockout mice have led to the
proposal that SIRT6 functions as a co-repressor of Hif1α

transcriptional activity, where it can deacetylate histone
H3 at lysines 9 and 56 at Hif1α target gene promoters [76].
Thus, SIRT6, like SIRT3, is suggested to be a negative regu-
lator of the hypoxia response pathway.

SIRT7

SIRT7 is arguably the least studied of the mammalian sirtuins.
It has been reported to activate RNApolymerase I transcription,
although the protein substrate for this action is still unknown
[32]. It has been shown to interact with and deacetylate p53
in vitro, which has been suggested to correspond to the
hyperacetylation of p53, cardiac hypertrophy, and inflammato-
ry cardiomyopathy evident in mice that lack SIRT7 [77]. More
recently it has been identified as a deacetylase of histone H3
lysine residue 18, important for stabilizing the transformed state
of cancer cells [78]. Lastly, SIRT7 has been identified as a
negative regulator of Hif1α and Hif2α, suggesting that, like
SIRT6, SIRT7 may be a regulator of the hypoxia response
pathway. Interestingly, the mechanism of action for this
regulation appears to be independent of SIRT7’s catalytic
activity [79].

Sirtuin Biochemical Mechanism

Sirtuins are NAD+-dependent deacetylases. Unlike class I, II
and IV deacetylases, which are zinc dependent and
deacetylate proteins by activation of a water molecule that
hydrolyzes the acetyl-amide bond to form acetate in a reaction
that is thermodynamically highly favorable [9], sirtuins cata-
lyze NAD+-dependent deacetylation of acetyllysine, resulting
in the production of deacetylated lysine, nicotinamide, and a
third product 2′-O-acetyl-ADP-ribose (OAADPr) (Scheme 1),
an unusual species, and still largely mysterious [80]. Moazed
et al. showed this compound is a stabilizer of heterochromatin
assemblies in yeast [81], with the caveat that yeast heterochro-
matin is not evolutionarily conserved, and so functions in
humans are less clear. The possible roles of AADPR have
been reviewed recently by Denu [82]. This complex chemis-
try, featuring three reactants and three products, is highly
biologically conserved, and organisms widely distributed
across all phyla of life encode sirtuins in their genomes. The
production of O-acetyl-ADPR has been noted to be catalyzed
by sirtuins fromArchaea [83], eubacteria [83], protozoa, yeast
[80, 84] and mammals [83].

Recent work has identified additional substrates for
sirtuins, including acylated substrates bearing side chains such
as propionyl [85], butyryl [85], succinyl [86], malonyl [86]
and myristoyl [87]. These modifications hint at broad
spectra of acylations with potential regulatory impact in
biologic significance, beyond those already well known, such
as acetylation.
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Regulation of Sirtuins by NAD Metabolism

The biochemical requirement of NAD+ by sirtuin enzymes
provides a basic source of sirtuin activity regulation, through
modulating NAD level. The premise that sirtuin activity reg-
ulation is dependent on NAD levels was first established in
yeast, wherein genetic modifications of the NAD biosynthetic
pathway that altered NAD levels, affected measurable biolog-
ical activities associated with Sir2 [88, 89]. For example,
reduced NAD levels caused phenotypic changes in yeast,
which included a loss of gene silencing at heterochromatin
[88], increased recombination frequency, and decreased repli-
cative lifespan [88, 90]. As discussed in this section, the
notion that sirtuins are regulated by NAD metabolism in
general and appears conserved across a wide breadth of phy-
logenetic space is broadly supported by a wealth of experi-
mental data.

The key dynamics of NAD metabolism that affect sirtuin
activity are changes in NAD and nicotinamide levels [91–93].
NAD is the reactant of the sirtuin reaction and provides
stimulation via increased probability of maintenance of the
Michaelis complex. Nicotinamide is a product of sirtuin
chemistry [83], and causes decreased activity of sirtuins
via chemical reaction with the first intermediate formed on
the enzyme from NAD, called an ADPR-peptidyl imidate
[80]. This intermediate is formed by a chemical reaction
of NAD with an acetyllysine substrate bound on the
enzyme active site [94].

Evidence that nicotinamide affects sirtuin function was
first obtained in the yeast, where the overexpression of an
enzyme called nicotinamidase (pnc1), known to convert
nicotinamide to nicotinic acid, caused increased replicative
lifespan and increased gene silencing [92]. Conversely,
deletion of pnc1 caused loss of replicative lifespan and
reduced gene silencing in heterochromatin, consistent with
a negative effect on Sir2 catalytic function in yeast [91, 95,
96]. Further, Sauve et al. have shown by isotope dilution
and mass-spectrometry that nicotinamide levels increase 10-
fold in pnc1Δ yeast [97]. Consistently, nicotinamide added
exogenously to yeast causes a loss of gene silencing and
replicative lifespan [91].

In mammalian systems there appears to be an analogous
sensitivity of sirtuins to NAD levels and NAD metabolism.
First, sirtuins such as SIRT1 have Km values in the 100–
500 μM range [98], consistent with regulation by physiolog-
ical NAD levels, which are reportedly 300 μM in several
rodent tissues [93, 99, 100]. This biochemical data predicts
that NAD modulation would be able to biochemically alter
sirtuin signaling strength. Indeed, numerous studies now sup-
port this point of view. For example, PARP1 knockouts cause
systemic NAD increases in animals, suggesting that PARP1
competes for a limited NAD pool [99]. The increase in NAD
concentration in tissues is associated with increased SIRT1
activity and correlates with decreased FoxO1 and PGC1α
acetylation [99]. More recently, it has been shown that the
small molecule NAD precursor nicotinamide riboside can

Scheme 1 Depiction of
stoichiometry of sirtuin catalyzed
deacetylation

Sirtuins: Therapeutic Targets in the CNS 609



enhance NAD levels in several peripheral tissues including
muscle [100]. This increased NAD is associated with de-
creased FoxO1 and PGC1α, acetylation, and consistent with
an observed increased mitochondrial activity [100]. In this
study, a decreased acetylation of SOD2 is also noted,
suggesting an increased SIRT3 activity [100]. These observa-
tions are consistent with increased NAD levels in mitochon-
dria isolated from tissue.

Less is known about how nicotinamide concentrations affect
the activities of sirtuins in mammalian cells. Nicotinamide is a
fairly potent inhibitor of SIRT1 and SIRT2, as determined from
reported biochemical data, and consequently, has been widely
applied to provide pharmacological sirtuin inhibition.
However, data on nicotinamide inhibition of sirtuin isoforms
is rather limited beyond SIRT1 and SIRT2, and it is currently
unclear how effective nicotinamide is as an inhibitor of the
sirtuin isoforms SIRT3–7. On the other hand, evidence reported
from multiple studies suggests that endogenous nicotinamide
concentrations are likely to provide physiological regulation of
sirtuin isoforms, particularly SIRT1 and SIRT2. Work done by
the Sauve laboratory, for example, has not only provided Ki
values for SIRT1 [101], but also nicotinamide concentrations in
brain ranging from 100 to 300 μM [93]. This concentration
range is high enough to cause inhibition of sirtuin isoforms.
Nevertheless, the effects of nicotinamide as an endogenous
repressor of sirtuin activity have been difficult to quantify.

Regulation of Sirtuins by Transcriptional
and Posttrancriptional Control

There is evidence that sirtuins are not only regulated at the
level of metabolism but also at the transcriptional and possibly
translational levels. Early speculations conceived that human
sirtuins might positively respond to low calorie stress, such as
those elicited by fasting. This hypothesis has been confirmed
for several sirtuin isoforms, including SIRT1, SIRT3, SIRT5
and SIRT6. The transcriptional upregulation of sirtuin
isoforms has encouraged further studies to determine if sirtuin
isoforms are key to cellular and tissue specific adaptations
associated with low calorie diets.

The transcriptional upregulation of SIRT1 has been noted to
be a direct consequence of low calorie conditions or fasting in
rodents. This transcriptional upregulation has been observed in
several tissues [102], including fat, liver, brain and kidney [93]. It
is probable that some of the effects of SIRT1 in a biological
setting is driven by absolute SIRT1 abundance, a concept that is
supported by numerous biological studies. For instance,
overexpression of SIRT1 via expression vectors in cell-based
systems shows that SIRT1 activity is typically limiting, and
increasing SIRT1 abundance is key for its biological effects.
These dosage effects associated with SIRT1 amount, as well as
evidence that its biological activity is typically subsaturated

under many physiologic conditions, has stimulated efforts to
target SIRT1 with small molecules that could stimulate SIRT1
activity ([103, 104]; and discussed below).

At the level of posttranslational modification, Puigserver
et al. [105] identified a key serine phosphorylation site on
SIRT1 (S434), which is sensitive to β-adrenergic signaling.
This modification leads to an apparent increase in SIRT1
activity via decreased Km (55 % decrease) and increased
Vmax (250 % increase) [105]. Conversely, another study has
suggested that a threonine residue (T344) within SIRT1 can be
phosphorylated through the activation of AMPKinase signal-
ing, which leads to its inactivation [106]. The mechanisms by
which these phosphorylations occur are still unclear, although
it appears that independent kinases could be involved. For the
SIRT1 S434 site, at least, Gerhart-Hines et al. has suggested
that cAMP is crucial for establishing phosphorylation, and it
can be stimulated by clenbuterol, forskolin or Br-cAMP [105].
This activating modification suggests that SIRT1 activity may
normally be reduced from a maximal level, and higher levels
can be unleashed by key structural changes to the SIRT1
protein. Indeed, other authors have reported that sumoylation
of SIRT1 on Lys 734 can modify SIRT1 enzymatic
activity [107].

Several studies have noted that SIRT3 levels are increased
at the transcriptional level by CR [108, 109] implying that
SIRT3 transcription is responsive to nutrition and consistent
with its role of metabolic adaption. Among these is an appar-
ent requirement of SIRT3 in CR-induced ROS detoxification,
as measured by glutathione GSSH/GSSG ratio and by accu-
mulation of 4-hydroxy-2-nonenal. As discussed, downstream
of CR-induced SIRT3 are the deacetylation targets SOD2,
which are important for oxygen detoxification [64], and the
mitochondrial matrix protein IDH2, which through its oxida-
tive decarboxylation of isocitrate to α-ketoglutarate is a major
source of NADPH [65].

Sirtuins 5 and 6 are less well characterized than SIRT1 or
SIRT3, and less is known about their biological functions,
including how they are regulated. Nevertheless, both SIRT5
[110] and SIRT6 [111] are sensitive to CR conditions and are
transcriptionally induced by low calorie stress. SIRT5 is mi-
tochondrial and appears to regulate urea cycle function, via
upregulation of the activity of carbamoyl phosphate synthe-
tase 1 (CPS1) [27]. Thus, upregulated SIRT5 activity in liver,
during CR stress, accommodates increased physiologic needs
for nitrogen disposal, since amino acids become more readily
metabolized under these conditions [27]. Mice lacking
SIRT5 experience hyperammonemia during fasting, ap-
parently due to failure of the urea cycle to be upregulated
appropriately [27].

SIRT6 is a potent repressor of several transcription factor
activities central to metabolism, including Hif1α [76, 112]. The
fact that Hif1α controls flux through glycolysis and pyruvate
dehydrogenase implicates SIRT6 as a central regulator of glucose
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homeostasis. Thus, a presumptive role of SIRT6 activation dur-
ing CR may be to reduce glucose demand in cells and tissues in
which SIRT6 activity is upregulated.

The role of sirtuins in mediating CR effects is difficult to fully
define, and the fact that several mammalian sirtuins are
upregulated by CR does not necessarily mean that sirtuins are
required for all physiologic effects observed in calorie-restricted
animals. This caveat is mentioned here to provide balance to the
discussions that follow where effects of CR in neuropathology
are described.

Macromolecular Regulators of Sirtuins

Consistent with the view that sirtuin activity is involved in
regulation of various parts of transcription and chromatin, it is
not surprising that endogenous macromolecular mediators of
sirtuin activity have been identified. Among these are macro-
molecular regulators of SIRT1. DBC1 [113, 114] and AROS
[115] have both been tied to SIRT1 activity regulation, with
repression or derepression of SIRT1 function featuring in
these activities. The presumption that SIRT1 activity is typi-
cally suboptimal underscores the importance of these regula-
tors as well as the effects of metabolic or other activating
effects on SIRT1 activity.

Pharmacological Control of Sirtuin Activity

The starting point for sirtuin pharmacology can be thought of
as nicotinamide and NAD, wherein nicotinamide is a natural
inhibitor of sirtuin activity and NAD is a natural activator (see
Fig. 1). NADH has also been suggested to be a sirtuin mod-
ulator [116]. The role of NADH has been controversial and
biochemical studies by the Denu laboratory have suggested
that NADH might not directly influence sirtuin activities as
physiological concentrations [117]. NAD and nicotinamide
are metabolites that are putative pharmacologic endpoints
for modulation, which can provide a basis for sirtuin activity
manipulation, but of course only in a crude sense. That is
because increased NAD or increased nicotinamide provides
broad non-specific changes in sirtuin activities, not specific to
a single subcellular compartment or sirtuin isoform. A case in
point is the small molecule nicotinamide riboside, which
reportedly activates both SIRT1 and SIRT3 activities, pre-
sumably by increased NAD levels in cytoplasm and mito-
chondria [100]. Interestingly enough, there is still limited
knowledge about how NAD and nicotinamide changes
occurring physiologically affect isoform activities in tissues,
and this is particularly true in brain, where the effects of
NAD metabolism changes might be a fundamental part of
the aging process and could participate in the development
of various pathologies.

Resveratrol and STACS

Sirtuins are pleiotropic but central regulators of numerous
physiologic processes, which are amplified by low calorie
stresses and associated with beneficial health effects in mam-
mals, including humans. These findings have underscored the
potential behind modulating the sirtuin activities as a means to
not only study them, but to evaluate and exploit these enzymes
as potentially interesting therapeutic targets.

Considerable attention and controversy has developed
around the compounds resveratrol and other so-called Sirtuin
Activating Compounds “STACs” [118] as potential activators
of sirtuins, particularly SIRT1. This attention has been due
largely to very interesting biological effects of these com-
pounds. For example, resveratrol has been shown to have
potent effects in mitigating the toxic effects of high fat diet in
mice [119]. Two independent laboratories established that res-
veratrol increases mitochondrial biogenesis in resveratrol treat-
ed animals exposed to high fat diet [44, 119]. Compounds of
independent structure from resveratrol, discovered by similar
assays to that which obtained resveratrol as a STAC, have also
provided impressive insulin sensitizing effects and positive
health outcome in high fat diet challenged rodents [120].
Obviously, these impressive effects also extend to neuro-
protection, in which resveratrol has been demonstrated to have
mitigating effects in a number of neurodegeneration and neural
injury models, as discussed in the next section.

The effects of resveratrol and “STACs” were initially
interpreted to be from direct binding to SIRT1, as shown by
assays wherein they were shown to activate SIRT1. This
interpretation of their mode of action has been subject to
intense scrutiny and other interpretations have emerged.
Pacholec et al. concluded that resveratrol and STACs do not
act upon SIRT1 with whole protein physiologic substrates
such as p53 or acetylCoA synthetase, and concluded that the
effects of STACs and resveratrol were instead attributable to
off-target activities [121]. In fact, resveratrol has been widely
acknowledged to have a number of additional targets, in
addition to SIRT1, such as AMPK [122]. In addition, resver-
atrol targets include cAMP phosphodiesterases, which modu-
lates cAMP signaling strengths in cells [123]. The lack of
clarity regarding mechanism of action of the “STACs” has
hindered further development of these compounds, and has
created some confusion about their effects and mode of action.

Sirtuins as Therapeutic Targets in Neurodegenerative
Disease and Injury

To date, the most studied sirtuins in the context of
neurodegeneration and injury are SIRT1 and SIRT2.
Accumulating evidence suggests they may play different roles
in neurodegeneration, with different protein targets, and have
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different potentials for the development of therapeutic appli-
cations. Additionally, as awareness grows for the roles that
the mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5 play
in metabolic regulation and adaption, so too does their
potential as therapeutic targets in the nervous system. In
this section, we discuss the effects of sirtuins on the
outcomes of a number of important neurological disorders,
includingAlzheimer’s disease, Parkinson’s disease, Huntington’s
disease, amyotrophic lateral sclerosis, multiple sclerosis, and
ischemic stroke.

Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive, degenerative dis-
order causing neurological damage and brain atrophy
resulting in memory loss, cognitive and functional decline,
and death. It is the most common neurodegenerative disorder
[124]. The disease presents itself in two variants: the first is the
familial form, which accounts for a small percentage of all AD
patients, and is induced by dominant mutations in the amyloid
precursor protein (APP), presenilin-1 (PS1) or PS2 genes
[125, 126]; the second is the aging-associated sporadic or
late-onset form that is characterized by the early presence of
inflammatory mediators both in plasma and in the brain [127,
128]. Importantly, a major risk factor for both forms of the
disease is the inheritance of the ApoE ε4 allele [129]. The
pathologic hallmarks of Alzheimer's disease are neurofibrillary

tangles and neuritic plaques [124]. Neurofibrillary tangles con-
sist largely of hyperphosphorylated tau and are located within
cell bodies of affected neurons. The principal component of
plaques is amyloid-β, or Aβ, a peptide derived from the
amyloid precursor protein by β- and γ-secretase in the
amyloidogenic pathway (reviewed in [130, 131]).

The indication that sirtuins might play a protective role
against AD initially came from caloric restriction (CR) stud-
ies, in which CR reduced Aβ generation and Aβ plaques in
AD-transgenic mice [132, 133]. In support of this, CR studies
in AD-type brain amyloidosis in Squirrel monkeys were sim-
ilarly found to result in reduced Aβ. Importantly, CR and
reduced Aβ are correlated with increased SIRT1 levels in both
in monkeys and mice [93, 134]. CR mediated SIRT1 expres-
sion appears to reduce Aβ peptide generation through mech-
anisms that favor aα-secretase non-amyloidogenic processing
of APP. For example, SIRT1 has been demonstrated to inhibit
the expression of the serine/threonine Rho kinase, ROCK1, a
protein known to inhibit α-secretase processing of the amy-
loid precursor protein [93]. In another study, SIRT1 has been
shown to deacetylate and activate the retinoic acid receptor β
(RARβ), stimulating the expression of ADAM10, a
membrane-tethered protease belonging to the A disintegrin
and metalloprotease family and implicated in α-secretase
cleavage of APP [135]. In addition to reducing Aβ plaques,
SIRT1 may also impact neurofibrillary tangle pathology. An
early p300-mediated event that precedes the accumulation of
neurofibrillary tangles is the acetylation of tau, which slows its

Fig. 1 Reaction of sirtuin
mediated deacetylation and role
of NADmetabolites nicotinamide
and NAD in modulating
chemistry occurring on sirtuin
enzymes (discussed in text)
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degradation by inhibiting ubiquitination. Studies have shown
that SIRT1 activity can reduce the acetylation level of tau,
thereby promoting its degradation and clearance [136].

Parkinson’s Disease

Parkinson’s disease (PD) is a progressive neurodegenerative
disease characterized by movement disorders, resulting from
damage or destruction of dopaminergic neurons in the substantia
nigra [137, 138]. It is the second most common neurodegener-
ative disorder. Although numerous genes responsible for famil-
ial PD have been identified, the etiology of sporadic PD, which
accounts for the majority of PD cases, is still unknown [139,
140]. Detailed studies in PD pathology suggest that the degen-
eration of neurons involve several cellular and molecular
events, including mitochondrial dysfunction, oxidative stress,
microglia-mediated inflammation, and the misfolding and
aggregation of proteins [141, 142]. Lewy bodies that contain
α-synuclein aggregates are present in both familial and spo-
radic forms of PD.

Like AD, CR has shown protection in models of PD. In
rhesus monkeys CR was shown to reduce nigro-striatal dopa-
minergic neuron vulnerability to the neurotoxin 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) [143]. Similarly,
mice subjected to CR or 2-deoxy-D-glucose have been shown
to exhibit reduced dopaminergic neuron damage in the
substantia nigra and improved behavioral outcome following
MPTP treatment [144]. More direct evidence has come from
studies showing that SIRT1 is necessary and sufficient for
increasing lifespan in a mutant α-synuclein mouse model of
PD. In this study, in response to α-synuclein aggregation,
SIRT1 was found to deacetylate heat shock factor 1 (HSF1)
and increase the expression of the molecular chaperone,
HSP70 [145]. In contrast to this however, Kakefuda et al.
[146] have shown that neuron-specific overexpression of
SIRT1 in mice is not sufficient to protect against MPTP
toxicity, and a further study by Park et al. [147] has shown
that SIRT1 knockdown actually attenuates 1-methyl-4-
phenylpyridinium ion (MPP(+))-induced cytotoxicity in the
SH-SY5Y dopaminergic cell line.

SIRT2 has also been identified as a therapeutic target in
PD. For example, the inhibition or knockdown of SIRT2 has
been shown to rescue alpha-synuclein toxicity and modify
inclusion morphology in cellular models of PD, and protect
against dopaminergic cell death in a Drosophila model of PD
[148]. Confirming these findings, a more recent study has
shown that the genetic deletion of SIRT2 in mice can reduce
MPTP-induced nigro-striatal damage [148]. The proposed
mechanism for this protection is that the loss of SIRT2 activity
prevents MPTP stress-induced FoxO3a deacetylation and
subsequent increased levels of the pro-apoptotic mediator
Bim [149].

Huntington’s Disease

Huntington's disease (HD) is an autosomal dominant neuro-
degenerative disorder characterized by motor, cognitive and
behavioral dysfunction. It is caused by an unstable expansion
of CAG repeats in the coding region of the Huntingtin gene
IT15 [150], which generates a stretch of glutamine residues
spanning the N-terminus of the Huntingtin protein (HTT). In
general, individuals with ≥40 repeats are at risk of developing
HD as they age [151, 152]. Studies suggest that the aggrega-
tion of mutant HTT fragments is the major cause of toxicity,
specifically damaging cortical and striatal medium spiny neu-
rons in HD patients [152–156].

Early studies in mutant HTT transgenic mice (N171-
82Q) showed that CR can delay the onset of motor dys-
function and prolong lifespan [157]. However, the first
report demonstrating a direct connection between SIRT1
and HD came from Parker et al. [158], who found that
overexpression of Sir2 or treatment with resveratrol can
rescue neuronal dysfunction phenotypes induced by mutant
polyglutamine in Caenorhabditis elegans . Contrary to these
findings though, Pallos et al. [159] have used a Drosophila
melanogaster model of HD to show that a 50 % reduction
in Sir2 expression extends survival of photoreceptor neu-
rons expressing mutant Htt [159]. Overexpression of Sir2
neither had a deleterious nor beneficial effect on mutant
HTT photoreceptor neurons. In mouse models of HD, the
role of SIRT1 in mutant HTT neurotoxicity has been more
apparent. In one study that crossed a N171-82Q HD mouse
line with a brain SIRT1 overexpression mouse line, an
attenuation in brain atrophy, delayed onset, and a slowing
of motor deficit progression was observed [160]. Similarly,
in a different HD mouse model, the R6/2 line, in which a
N-terminal huntingtin fragment containing an expanded
polyglutamine tract is overexpressed, high levels of SIRT1
expressed from an endogenous β-actin promoter was able
to attenuate brain pathology, reduce protein aggregation and
improve (in males) survival. In contrast to this, brain-specific
deletion of SIRT1 exacerbated HD brain pathology [161].
Several mechanisms for SIRT1 protection have been proposed
from these studies. One mechanism is that SIRT1 deacetylates
and activates CREB-regulated transcription coactivator 1
(TORC1), a brain-specific modulator of CREB activity, which
rescues mutant-HTT-mediated interference of TORC1 activity,
facilitates its interaction with CREB, and promotes the tran-
scriptional activation of brain-derived neurotrophic factor
(BDNF) [161]. Another mechanism is that through its
deacetylase activity, SIRT1 can correct a hyperacetylation of
its substrates, which occurs in mutant HTT expressing cells. In
particular, Jiang et al. [161] demonstrate that SIRT1 can reduce
mutant HTT-induced FoxO3a acetylation and ameliorate mu-
tant HTT-induced deficits of dopamine- and cAMP-regulated
phosphoprotein, 32 kDa (DARPP32) and BDNF expression.
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SIRT2 has also been studied with regard to its potential as a
therapeutic target in HD. In one study, the genetic reduction of
SIRT2 in the Drosophila melanogaster HD model was found
to lead to greater survival of photoreceptor neurons, although
it did not suppress overall fly lethality [159]. SIRT2 inhibition
has also shown protection in primary neuronal HD models.
This protection was attributed to a reduction in mutant
huntingtin aggregates and the downregulation of genes
responsible for cholesterol biosynthesis, a pathway which
is dysregulated in HD patients and HD mouse models
[162]. In contrast to this, however, studies looking at
SIRT2 reduction or knockout in the mouse R6/2 HD model
were not found to be neuroprotective, nor did they
affect polyglutamine aggregation and cholesterol biosyn-
thesis [163].

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS; also known as Lou
Gehrig's disease) is a progressive and fatal neurodegenera-
tive disease that primarily affects motor neurons [164]. A
hallmark of ALS is the appearance of cytoplasmic protein
inclusions in affected motor neurons and glial cells [164,
165]. To date, well over 100 independent mutations in the
copper/zinc superoxide dismutase 1 (SOD1) have been
reported to be causative of ALS, accounting for∼20 % of
familial ALS [164, 166–168].

SIRT1 has been studied in the context of mutant SOD1
(SOD1-G37R) overexpression in cells and transgenic mice. Of
interest, these studies have found SIRT1 to be increased in the
spinal cords of mutant mice, particularly when severe
neurodegeneration is evident [169]. Furthermore, lentiviral-
mediated infection and overexpression of SIRT1, but not a
non-functional SIRT1, can protect cultured primary neurons that
express a toxic mutant SOD [169]. In support of this, resveratrol
has been shown to protect neurons in cell-based models of ALS
[170, 171] and in the mutant SOD1-G93A mouse model [172,
173]. Proposed mechanisms for this protection include the
SIRT1mediated deacetylation ofHSF1,which induces transcrip-
tion of the molecular chaperones HSP70 and HSP25, promoting
motor neuron survival [173].

SIRT3 has also been identified as a potential therapeutic
target in ALS. In an ALS model that uses SOD1-G93A-
expressing rat spinal cord motor neurons, SIRT3 over-
expression can rescue mutant SOD1 induced defects in mito-
chondrial dynamics [174]. While the mechanism underlying
this protection is not well understood, it may involve the
deacetylation of SOD2 and isocitrate dehydrogenase 2
(IDH2), which increases their enzymatic activities.
Additionally, cyclophilin D can also be deacetylated by SIRT3
and may be important for the prevention of mitochondrial per-
meability transition [174].

Multiple Sclerosis

Multiple sclerosis (MS) is a severe human neurological disor-
der that involves inflammation at multiple foci throughout the
central nervous system. The pathogenic mechanism of MS is
regarded to be autoimmune-mediated demyelination, which
leaves axons vulnerable to degeneration [175]. Relapsing-
remitting MS, the most common form of the disease, is
marked by intermittent episodes of focal neurologic dysfunc-
tion that partially recovers as acute inflammation resolves.
Other MS patients follow a primary or secondary progressive
disease course marked by a slow neurologic decline due to
axonal damage and loss of neurons without discrete episodes
of inflammation and demyelination [175].

SIRT1 has been identified as a therapeutic target in MS
through studies in mice where MS is modeled by experimental
autoimmune encephalomyelitis (EAE). In one study, two struc-
turally distinct SIRT1 activators, SRT647 and SRT501, were
shown to be neuroprotective in retinal ganglion cells during
EAE-induced acute optic neuritis. While the specific substrates
of SIRT1 that mediate survival were not identified, it was
determined that SIRT1 activation did not prevent inflammation,
suggesting SIRT1 is neuroprotective even in the presence of
active inflammation [176]. Contrary to this study, a recent
publication has demonstrated that SIRT1 inactivation increases
the production of new oligodendrocyte progenitor cells in the
adult mouse brain, which can ameliorate remyelination and
delay paralysis in a mouse EAE model [177].

Neurological Injury

Stroke is one of the leading causes of death and adult disability
worldwide. The majority of strokes are ischemic and result
from an occlusion of a major cerebral artery by a thrombus or
embolism. The other major type of stroke is hemorrhagic,
which results from a blood vessel rupture either in the brain
or on its surface [178]. The consequence of both of these events
is a significant reduction in blood flow and nutrients critical for
neural function and survival. The pathophysiology of the af-
fected area includes energy failure, excitotoxicity, free radical
generation and elevation of intracellular calcium, which culmi-
nate in cell death or dysfunction [178, 179]. Depending on the
location and magnitude of damage, stroke may impact move-
ment, sensation, vision, speech, and cognition.

The first indications that sirtuins might represent therapeutic
targets for stroke came from neuroprotection studies in cellular
and animal models showing that resveratrol could protect from
brain injury [180–182] and cerebral ischemia [183–185].
Importantly, additional studies went on to show that the block-
ade of SIRT1 activation by sirtinol abolishes the resveratrol
neuroprotection [186]. In addition to resveratrol, overexpression
of nicotinamide phosphoribosyltransferase (NAMPT), the rate-
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limiting enzyme of the NAD+ salvage pathway, has also been
shown to offer protection against stroke, while NAMPT inhibi-
tion by FK866 exacerbated ischemic injury [187]. In this study,
SIRT1 was shown to be essential for the neuroprotective effect
of NAMPT overexpression since protection was blocked by
SIRT1 deletion [187]. Despite these positive findings, studies
that have used SIRT1 gain-of-function or loss-of-function have
yielded mixed results. In one study, using SIRT1 transgenic
mice in which human SIRT1 was overexpressed under the
control of the rat neuron-specific enolase (NSE) promoter, no
neuroprotection was observed against stroke [146].
Consistently, another study reported that SIRT1 inhibition by
nicotinamide had a positive effect on outcome after cerebral
ischemia [188]. One explanation for these findings is that be-
cause SIRT1 is a NAD+ consuming enzyme, the detrimental
effects of its high-energy consumption outweigh its beneficial
effects during periods of nutrient deficiency such as stroke. In
spite of this explanation, a more recent report has demonstrated
that SIRT1 knockout mice have larger infarct volumes and
worse neurological outcome than their wild-type littermates after
permanent focal ischemia [189].

Conclusions

In recent years it has become clear that themodulation of sirtuin
activity may be a valuable therapeutic strategy for ameliorating
or delaying the functional and pathological deficits associated
with neurodegenerative disease or injury. However, research
into sirtuin function and neurodegeneration has largely focused
on SIRT1 and SIRT2. Insights into the metabolic roles of
SIRT3–SIRT5 in the mitochondria, and SIRT6’s role in ge-
nome stability, DNA repair, and metabolism, highlight their
potential as similar therapeutic targets. Similarly, the biological
targets and possible roles of SIRT7 in neurodegeneration are
largely unexplored.

One of the challenges moving forward will be to understand
how each of the sirtuins might best be targeted. As described in
this Chapter, sirtuin activity may be controlled at multiple
levels: by their expression, localization, substrate availability,
NAD or nicotinamide level, posttranslational modifications,
and by small molecule activators, e.g. STACS. With regard to
neurodegeneration and injury, a number of these have been
exploited to modulate sirtuin function. For example, a number
of STACs, including resveratrol have shown impressive effica-
cy in multiple models of neurodegeneration. Similarly, genetic
manipulation of sirtuin levels, modulation of NAD by nicotin-
amide riboside, exogenous NAD administration, or inhibiting
PARP, have similarly shown efficacy. However, a greater un-
derstanding of sirtuin regulation and NADmetabolism is need-
ed. For example, little is known about how NAD and nicotin-
amide pools differ in different cellular compartments and how
these regulate certain sirtuin family members or are impacted

during disease or pharmacological intervention. Moreover,
our ability to measure the activities of individual sirtuin
family members in situ, especially in neurons, limits identi-
fication of precise and disease-relevant molecular targets,
particularly given the large number of biological substrates
affected by sirtuins.

Finally, neurodegenerative disease and injury represent
disorders with complex etiologies and multiple perturbed
factors and pathways. Given that sirtuins have numerous
cellular target substrates can significantly impact cellular and
mitochondrial metabolism and promote longevity, it is reason-
able to anticipate that they would represent valuable therapeu-
tic targets. Further understanding of their precise roles, sub-
strates, activity and regulation will undoubtedly lead to im-
proved therapeutic strategies for combating neurodegenera-
tive disease and injury.
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